\(P=\dfrac{a^2+b^2}{a-b}=\dfrac{\left(a-b\right)^2+2ab}{a-b}=\dfrac{\left(a-b\right)^2+2}{a-b}=\left(a-b\right)+\dfrac{2}{a-b}\)
Áp dụng bất đẳng thức Cauchy ta có:
\(\left(a-b\right)+\dfrac{2}{a-b}\ge2\sqrt{\left(a-b\right).\dfrac{2}{a-b}}=2\sqrt{2}\) hay \(P\ge2\sqrt{2}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a>b\\a-b=\dfrac{2}{a-b}\\ab=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b=\sqrt{2}\\ab=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+\sqrt{2}\\\left(b+\sqrt{2}\right)b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{\pm6+\sqrt{2}}{2}\\b=\dfrac{\pm\sqrt{6}-\sqrt{2}}{2}\end{matrix}\right.\)Vậy \(MinP=2\sqrt{2}\), đạt tại \(\left(a;b\right)=\left(\dfrac{\sqrt{6}+\sqrt{2}}{2};\dfrac{\sqrt{6}-\sqrt{2}}{2}\right),\left(\dfrac{-\sqrt{6}+\sqrt{2}}{2};\dfrac{-\sqrt{6}-\sqrt{2}}{2}\right)\)