Cho x, y là 2 số thực dương thỏa mãn
(x+y)2+7(x+y)+y2+10=0
Tìm GTNN của biểu thức A=x+y+1
Cho x, y là 2 số thực dương thỏa mãn
\(\left(x+y\right)^2+7\left(x+y\right)+y^2+10=0\)
Tìm GTNN của biểu thức A=x+y+1
Ta có : \(\left(x+y\right)^2+7\left(x+y\right)+y^2+10=0\)
\(\Leftrightarrow\left(x+y\right)^2+2\left(x+y\right)+1+5\left(x+y+1\right)+y^2+4=0\)
\(\Leftrightarrow\left(x+y+1\right)^2+5\left(x+y+1\right)+y^2+4=0\)
Đặt t = x+y+1
Suy ra \(t^2+5t+y^2+4=0\)
Xét \(\Delta=25-4\left(4+y^2\right)=9-4y^2\) . Để pt có nghiệm thì \(\Delta\ge0\Rightarrow y^2\le\frac{9}{4}\)
Giả sử pt có hai nghiệm : t1 < t2 . Do đó GTNN của A xảy ra tại t1
Khi đó : \(t_1=\frac{-5-\sqrt{9-4y^2}}{2}\ge\frac{-5-\sqrt{9}}{2}=-4\)
Suy ra \(A\ge-4\) . Vậy Min A = -4 <=> y = 0 => x = -5
Bài 1 :Cho 2 số dương x,y thỏa mãn điều kiện \(x+y\le1\). Chứng minh\(x^2-\frac{3}{4x}-\frac{x}{y}\le\frac{-9}{4}\)
Bài 2 : Cho 2 số thực x,y thay đổi thỏa mãn điều kiện x+y\(\ge1\)và x>0
Tìm giá trị nhỏ nhất của biểu thức \(M=y^2+\frac{8x^2+y}{4x}\)
bài 3: cho 3 số dương x,y,z thay đổi luôn thỏa mãn điều kiện x+y+z=1. Tìm giá trị lớn nhất của biểu thức:\(P=\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)
3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).
Cho các số thực dương x, y thỏa mãn log x + y x 2 + y 2 ≤ 1 .Giá trị lớn nhất của biểu thức A= 48 ( x + y ) 3 - 156 ( x + y ) 2 + 133 ( x + y ) + 4 là
A. 29.
B. 1369/36.
C. 30.
D. 505/36
cho x,y,z là các số thực dương thỏa mãn điều kiện x+y+z=xyz.Tìm GTNN của biểu thức S=x/y^2 + y/z^2 + z/x^2
M=x+yxy.1z≥2√xyxy.1z=2z√xy≥2z(x+y2)=4z(x+y)M=x+yxy.1z≥2xyxy.1z=2zxy≥2z(x+y2)=4z(x+y)
=4z(1−z)=414−(z−12)2≥16=4z(1−z)=414−(z−12)2≥16
Min M= 16 khi z=1/2 và x=y =1/4
Cho các số thực dương x,y thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}=4\). Tìm GTNN của biểu thức \(A=\left(x^2+\dfrac{1}{x^2}+1\right)^4+\left(y^2+\dfrac{1}{y^2}+1\right)^4\).
Ta có \(a^4+b^4\ge\dfrac{\left(a^2+b^2\right)^2}{2}\ge\dfrac{\left(\dfrac{\left(a+b\right)^2}{2}\right)^2}{2}=\dfrac{\left(a+b\right)^4}{8}\). Áp dụng cho biểu thức A, suy ra \(A\ge\dfrac{\left(x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}+2\right)^4}{8}\). Ta tìm GTNN của \(P=x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}+2\). Ta có
\(P=x^2+\dfrac{1}{16x^2}+y^2+\dfrac{1}{16y^2}+\dfrac{15}{16}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+2\)
\(P\ge2\sqrt{x^2.\dfrac{1}{16x^2}}+2\sqrt{y^2.\dfrac{1}{16y^2}}+\dfrac{15}{16}\left(\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2}{2}\right)+2\)
\(=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{15}{16}.\left(\dfrac{4^2}{2}\right)+2\) \(=\dfrac{21}{2}\). Do đó \(P\ge\dfrac{21}{2}\) \(\Leftrightarrow A\ge\dfrac{\left(\dfrac{17}{2}+2\right)^4}{8}\). Vậy GTNN của A là \(\dfrac{\left(\dfrac{17}{2}+2\right)^4}{8}\), ĐTXR \(\Leftrightarrow x=y=\dfrac{1}{2}\)
Cho các số thực dương x,y thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}=4\). Tìm GTNN của biểu thức \(A=\left(x^2+\dfrac{1}{x^2}+1\right)^4+\left(y^2+\dfrac{1}{y^2}+1\right)^4\).
Gợi ý: \(\dfrac{a^4+b^4}{2}\ge\left(\dfrac{a+b}{2}\right)^4\)
Cho ba số thực dương x,y,z thỏa mãn x+y+z = 2. Tìm GTNN của biểu thức:
\(P=\dfrac{1}{xy}+\dfrac{1}{yz}\)
\(P=\dfrac{1}{y}\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\ge\dfrac{1}{y}.\dfrac{4}{x+z}=\dfrac{4}{y\left(x+z\right)}\ge\dfrac{4}{\dfrac{\left(y+x+z\right)^2}{4}}=4\)
\(P_{min}=4\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};1;\dfrac{1}{2}\right)\)
cho x,y,z là 2 số thực dương thỏa mãn \(2\sqrt{xy}+\sqrt{xz}=1\) Tính GTNN của biểu thức
P= \(\dfrac{3yz}{x}+\dfrac{4xz}{y}+\dfrac{5xy}{z}\)
Bạn tham khảo:
cho x,y,z >0 thỏa mãn \(2\sqrt{y}+\sqrt{z}=\dfrac{1}{\sqrt{x}}\). CMR: \(\dfrac{3yz}{x}+\dfrac{4zx}{y}+\dfrac{5xy}{z}\ge... - Hoc24
Cho x,y là 2 số nguyên dương thỏa mãn x+y=1. Tính GTNN của biểu thức : M = (x+1/y)^2 + (y+1/x)^2