cho hpt x - 3y =0, (a - 1)x - 3y =2 (a là tham số)
tìm a để hpt có nghiệm (x,y) sao cho x>0, y>0
Cho hệ phương trình (IV) :
3x-y=2m-1 và x+2y=3m+2
a, Gỉai hpt ( IV) khi m=1
b, Tìm m đề hpt (IV) có nghiệm duy nhất (x;y) sao cho :x^2+y^2=5
c, Tìm m để hpt có nghiệm duy nhất x;y sao cho x-3y>0
Cho hệ phương trình (IV) :
3x-y=2m-1 và x+2y=3m+2
a, Gỉai hpt ( IV) khi m=1
b, Tìm m đề hpt (IV) có nghiệm duy nhất (x;y) sao cho :x^2+y^2=5
c, Tìm m để hpt có nghiệm duy nhất x;y sao cho x-3y>0
a) Thay \(m=1\) vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}3x-y=1\\x+2y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy ...
b) HPT \(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\y=2m-1-3x\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=-m-1\end{matrix}\right.\)
Ta có: \(x^2+y^2=5\)
\(\Rightarrow m^2+m^2+2m+1=5\) \(\Leftrightarrow m^2+m-2=0\) \(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)
Vậy ...
c) Hệ phương trình luôn có nghiệm duy nhất
Ta có: \(x-3y>0\)
\(\Rightarrow m-3\left(-m-1\right)>0\)
\(\Leftrightarrow4m+3>0\) \(\Leftrightarrow m>-\dfrac{3}{4}\)
Vậy ...
Cho hệ phương trình (IV) :
3x-y=2m-1 và x+2y=3m+2
a, Gỉai hpt ( IV) khi m=1
b, Tìm m đề hpt (IV) có nghiệm duy nhất (x;y) sao cho :x^2+y^2=5
c, Tìm m để hpt có nghiệm duy nhất x;y sao cho x-3y>0
a) Thay m=1 vào hệ pt, ta được:
\(\left\{{}\begin{matrix}3x-y=1\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-y=1\\3x+6y=15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-7y=-14\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=5-2y=5-2\cdot2=1\end{matrix}\right.\)
Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là (x,y)=(1;2)
Cho HPT: \(\left\{{}\begin{matrix}a^2x-2y=0\\x+y=4\end{matrix}\right.\)( a là tham số). Tìm a để HPT có nghiệm (x=-4; y=4a)
Với a = 0 ta có \(\left\{{}\begin{matrix}-2y=0\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)( không thỏa mãn đề bài )
Với a ≠ 0 ta có : \(\left\{{}\begin{matrix}a^2x-2y=0\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2\left(4-y\right)-2y=0\\x=4-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a^2-a^2y-2y=0\\x=4-y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a^2+2\right)y=-4a^2\\x=4-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-4a^2}{a^2+2}\\x=4+\dfrac{4a^2}{a^2+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{8a^2+8}{a^2+2}\\y=\dfrac{-4a^2}{a^2+2}\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\dfrac{8a^2+8}{a^2+2}\\y=\dfrac{-4a^2}{a^2+2}\end{matrix}\right.\)là nghiệm duy nhất của hệ phương trình
Để hệ phương trình có nghiệm x = -4 , y = 4a thì :
\(\left\{{}\begin{matrix}\dfrac{8a^2+8}{a^2+2}=-4\\4a=\dfrac{-4a^2}{a^2+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}8a^2+8=-4a^2-8\\4a^3+8a=-4a^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a^2+4=0\\a^3+a^2+2a=0\end{matrix}\right.\)( đến đây bạn tự giải nốt rồi kết luận nhé :v )
\(\left\{{}\begin{matrix}x+y=a\\ax+2y=0\end{matrix}\right.\)
Hệ có nghiệm duy nhất khi \(a\ne2\)
Cho hệ pt : \(\left\{{}\begin{matrix}mx+3y=4\\2x-my=-3\end{matrix}\right.\)
a) Tìm m để HPT có vô số nghiệm
b) Với giá trị nào của m thì nghiệm của HPT thỏa mãn x<0 và y>0
Cho hpt: \(\hept{\begin{cases}\left(2m+1\right)x-3y=3m-2\\\left(m+3\right)x-\left(m+1\right)y=2m\end{cases}}\)
a)Tìm m để hpt có nghiệm.
b) Tìm m để hpt có nghiệm duy nhất(x,y) thỏa \(x\ge2y\)
c)Tì m để hpt có nghiệm duy nhất (x;y) sao cho biể thức P=\(x^2+3y^2\)
Cho hpt: \(\hept{\begin{cases}2x+3y=m\\25x-3y=3\end{cases}}\)
Tìm m để hpt có nghiệm x>0;y<0
Cho hpt gồm 2 pt sau : 5x-2y=3 và (m+1)x+3y=5 (với m là tham số)
a) Với giá trị nào của m thì hpt đã cho vô nghiệm ,có nghiệm duy nhất
b) tìm m để hpt có nghiệm duy nhất (x;y) thỏa mãn x+y=5
a) *)Để hệ đã cho vô nghiệm \(\frac{a}{a'}=\frac{b}{b'}\ne\frac{c}{c'}\)
\(\Rightarrow\hept{\begin{cases}\frac{m+1}{5}=\frac{3}{-2}\\\frac{m+1}{5}\ne\frac{5}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}-2m-1=15\\3m+3\ne25\end{cases}\Leftrightarrow}\hept{\begin{cases}m=\frac{-17}{2}\\m\ne\frac{22}{3}\end{cases}}}\)
*) Để hệ có nghiệm duy nhất
\(\Rightarrow\frac{a}{a'}\ne\frac{b}{b'}\Rightarrow\frac{m+1}{5}\ne\frac{3}{-2}\)
\(\Leftrightarrow-2m-2\ne15\)
\(\Leftrightarrow m\ne\frac{-17}{2}\)
b) Để hpt có nghiệm duy nhất \(\hept{\begin{cases}m\ne\frac{-17}{2}\\x+y=5\end{cases}}\)
Thay x=5-y vào hpt ta có \(\hept{\begin{cases}\left(m+1\right)\left(5-y\right)+3y=5\\5\left(5-y\right)-2y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)\left(5-y\right)+3y=5\\25-7y=3\end{cases}\Leftrightarrow\hept{\begin{cases}m=\frac{44}{13}\\y=\frac{22}{7}\end{cases}}}\)
Vậy \(m=\frac{44}{13}\)thỏa mãn điều kiện