hãy viết thu gọn tổng sau
D= \(1+5^2+5^3+...+5^{2016}+5^{2017}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
viết gọn các tích sau
d) 4 . 4 . 4 . 4 . 4 . 16
e) 5 . 5 . 5 . 5 . 3 . 3 . 3 . 15
e) 6 . 6 . 6 . 7 . 7 . 7 . 42
nhanh nha, tớ chấm cho
\(d.4.4.4.4.4.16=2^2.2^2.2^2.2^2.2^2.2^4=2^{14}\)
\(e.5.5.5.5.3.3.3.15=5^4.3^3.3.5=5^5.3^4\)
\(e.6.6.6.7.7.7.42=6^3.7^3.2.3.6=2^3.3^3.7^4.2.3=2^4.3^4.7^4\)
4.4.4.4.4.16=4.4.4.4.4.4.4=47
5.5.5.5.3.3.3.15=15.15.15.5.15=154.5
6.6.6.7.7.7.42=42.42.42.42=424
\(d)4.4.4.4.4.16\\ =4.4.4.4.4.4.4\\ =4^7\)
\(e)5.5.5.5.3.3.3.15\\ =5.5.5.5.3.3.3.5.3\\ =5^5.3^4\)
\(e)6.6.6.7.7.7.42\\ =6.6.6.7.7.7.6.7\\ =6^4.7^4\)
rút gọn b = -5 mũ 0 + 5 mũ 1 + -5 mũ 2 + -5 mũ 3 + chấm chấm chấm + -5 mũ 2016 + 5 mũ 2017
rối quá :)
B = (-5)0 + 51 + (-5)2 + 53 + ... + (-5)2016 + 52017
B = 1 + 51 + 52 + 53 + ... + 52016 + 52017
5B = 5 + 52 + 53 + ... + 52016 + 52017
5B - B = (5 + 52 + 53 + ... + 52016 + 52017) - (1 + 51 + 52 + 53 + ... + 52016 + 52017)
4B = 52017 - 1
B = \(\dfrac{5^{2017}-1}{4}\)
Tính: (2/3 + 3/4 + 4/5 + ... + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016) – (1/2 + 2/3 + 3/4 + ... + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016).
Thông cảm, mình không viết được phân số.
chấm hỏi lớn ???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
chính xác lun
đè nát đầu
Rút gọn:
B = ( -5)0 + (-5)1 + (-5)2 + (-5)3 + ...+ (-5)2016 + (-5)2017
\(B=1-5+5^2-5^3+...+5^{2016}-5^{2017}\) (1)
\(\Rightarrow5B=5-5^2+5^3-5^4+...+5^{2017}-5^{2018}\) (2)
Cộng vế với vế của (1) và (2):
\(6B=1+5-5+5^2-5^2+5^3-5^3+...+5^{2017}-5^{2017}-5^{2018}\)
\(\Rightarrow6B=1-5^{2018}\)
\(\Rightarrow B=\dfrac{1-5^{2018}}{6}\)
Rút gọn \(B=\left(-5\right)^0+\left(-5\right)^1+\left(-5\right)^2+\left(-5\right)^3+...+\left(-5\right)^{2016}+\left(-5\right)^{2017}\)
\(B=\left(-5\right)^0+\left(-5\right)^1+\left(-5\right)^2+...+\left(-5\right)^{2017}\)
\(-5B=\left(-5\right)^1+\left(-5\right)^2+\left(-5\right)^3+...+\left(-5\right)^{2017}\)
\(-6B=\left(-5\right)^{2017}-1\)
\(B=\frac{\left(-5\right)^{2017}-1}{-6}\)
Ta có : B = (-5)^0 + (-5)^1 + ......+ (-5)^2017
(-5)B = (-5)^1 + (-5)^2 + .......+ (-5)^2018
(-4)B = (-5)^0- (-5)^2018
B = 1 - (-5)^2018 / (-4)
Nếu có sai sót gì mong các bạn bỏ qua
\(-5B=\left(-5\right)^1+\left(-5\right)^2+...+\left(-5\right)^{2018}\)
\(-4B=\left(-5\right)^{2018}-\left(-5\right)^0\)
\(\Rightarrow B=\frac{\left(-5\right)^{2018}-\left(-5\right)^0}{-4}\)
A = \(\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{4}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)
B = \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49}{\left(125.7\right)^3+5^9.14^3}\)
C = \(\frac{\left(a^{2016}+b^{2016}\right)^{2017}}{\left(c^{2016}+d^{2016}\right)^{2017}}\)= \(\frac{\left(a^{2017}-b^{2017}\right)^{2016}}{\left(c^{2017}-d^{2017}\right)^{2016}}\)
A = \(\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{4}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)
\(=\frac{3.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)
\(=\frac{3}{5}+\frac{1}{\frac{5}{2}}\)
\(=\frac{3}{5}+\frac{2}{5}=1\)
b) B = \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6.8^4.3^5}-\frac{5^{10}.7^3:25^5.49}{\left(125.7\right)^3+5^9.14^3}\)
\(=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.7^2}{\left(5^3\right)^3.7^3+5^9.\left(7.2\right)^3}\)
\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}-7^2}{5^9.7^3+5^9.7^3.2^3}\)
\(=\frac{2^{12}.3^4.\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^2.\left(7-1\right)}{5^9.7^3\left(1+2^3\right)}\)
\(=\frac{1}{3.2}-\frac{5.2}{7.3}\)
\(=\frac{7}{3.2.7}-\frac{5.2.2}{7.3.2}\)
\(=\frac{7}{42}-\frac{20}{42}\)
\(=-\frac{13}{42}\)
cs ng làm đung r
đag định lm
Tính tổng: T= 1-2+3-4+5-...+2015-2016+2017
T = 1 -2 + 3 - 4 + 5 - .... +2015 - 2016 + 2017
T = (1 -2) + (3 - 4) + (5 - 6) +.......(2015 - 2016) + 2017
Mỗi nhóm có kết quả bằng - 1 và số nhóm sẽ là: [(2016 - 1) + 1] : 2 = 1008
=> T = -1 x 1008 + 2017 = - 1008 + 2017 = 1009
nhin tren ghi vao cung doi k a con lau(nhung minh k rui)
(2/3 + 3/4 + 4/5 + .........+ 2016 /2017 ) x ( 1/2 + 2/3 + 3/4 + ......+ 2015 /2016) - ( 1/2 + 2/3 + 3/4 + ........2016 /2017 ) x 2/3 + 3/4 + 4/5 + .....+ 2015/2016)
Cách 1:
Xét số bị trừ, ta có:
(2/3 + 3/4 + 4/5 + ... + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
= (2/3 + 3/4 + 4/5 + ... + 2015/2016 + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
= (2/3 + 3/4 + 4/5 + ... + 2015/2016) x (1/2 + 2/3 + 3/4 + ... + 2015/2016) + 2016/2017 x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
Xét số trừ, ta có:
(1/2 + 2/3 + 3/4 + ... + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= (1/2 + 2/3 + 3/4 + ... + 2015/2016 + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= (1/2 + 2/3 + 3/4 + ... + 2015/2016) x (2/3 + 3/4 + 4/5 + ... + 2015/2016) + 2016/2017 x (2/3 +3/4 + 4/5 + ... + 2015/2016) =
Ta thấy số bị trừ và số trừ có số hạng giống nhau là:
(2/3 +3/4 + 4/5 + ... + 2015/2016) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
Nên phép trừ trên có thể viết lại:
2016/2017 x (1/2 + 2/3 + 3/4 + ... + 2015/2016) - 2016/2017 x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= 2016/2017 x [(1/2 + 2/3 + 3/4 + ... + 2015/2016) - (2/3 +3/4 + 4/5 + ... + 2015/2016)]
= 2016/2017 x 1/2
= 1008/2017
Cách 2:
tính tổng S= (1/2018!)+(1/3!2016!)+(1/5!2014!)+...+(1/2017!2!)+(1/2019!)
\(S=\dfrac{1}{2018!\left(2019-2018\right)!}+\dfrac{1}{2016!\left(2019-2016\right)!}+...+\dfrac{1}{2!\left(2019-2\right)!}+\dfrac{1}{0!\left(2019-0!\right)}\)
\(\Rightarrow2019!.S=\dfrac{2019!}{2018!\left(2019-2018\right)!}+\dfrac{2019!}{2016!\left(2019-2016\right)!}+...+\dfrac{2019!}{2!\left(2019-2\right)!}+\dfrac{2019!}{0!\left(2019-0\right)!}\)
\(=C_{2019}^{2018}+C_{2019}^{2016}+...+C_{2019}^2+C_{2019}^0\)
\(=\dfrac{1}{2}\left(C_{2019}^0+C_{2019}^1+...+C_{2019}^{2018}+C_{2019}^{2019}\right)\)
\(=\dfrac{1}{2}.2^{2019}=2^{2018}\)
\(\Rightarrow S=\dfrac{2^{2018}}{2019!}\)