tìm n thuộc N biết:x^3y^4+2x^3y^4+3x^3y^4+.........+ n.x^3y^4=820x^3y^4
Tìm \(n\in N\)biết: \(x^3y^4+2x^3y^4+3x^3y^4+...+nx^3y^4=820x^3y^4\)
\(x^3y^4+2x^3y^4+3x^3y^4+....+nx^3y^4=820x^3y^4\)
\(\Leftrightarrow x^3y^4\left(1+2+3+....+n\right)=820x^3y^4\)
\(\Leftrightarrow1+2+3+....+n=820\)
\(\Leftrightarrow\frac{n\left(n+1\right)}{2}=820\)
\(\Leftrightarrow n\left(n+1\right)=1640=40.41\)
\(\Rightarrow n=40\)
\(x^3y^4+2x^3y^4+3x^3y^4+...+nx^3y^4=820x^3y\)
\(\Leftrightarrow x^3y^4\left(1+2+3+...+n\right)=820x^3y^4\)
\(\Leftrightarrow1+2+3+...+n=820\)
\(\Leftrightarrow\frac{n\left(n+1\right)}{2}=820\)
\(\Leftrightarrow n\left(n+1\right)=1640=40,61\)
\(n=40\)
Tìm \(n\in N\) biết: \(x^3y^4+2x^3y^4+3x^3y^4+...+nx^3y^4=820x^3y^4\)
Đặt \(A=x^3y^4+2x^3y^4+3x^3y^4+...+nx^3y^4\)
\(A=x^3y^4\left(1+2+3+...+n\right)\)
Lại có:\(A=820x^3y^4\)
\(\Rightarrow x^3y^4\left(1+2+3+...+n\right)=820x^3y^4\)
\(\Rightarrow1+2+3+...+n=820\)
\(\Rightarrow\dfrac{\left(n+1\right)n}{2}=820\)
\(\Rightarrow\left(n+1\right)n=1640\)
\(\Rightarrow\left(n+1\right)n=41\cdot40\)(vì \(n\in N\) nên ta không xét trường hợp âm)
\(\Rightarrow n=40\)
Vậy n=40
Tìm n thuộc N biết :
a) \(\left(7x^2y^3\right).\left(x^ny^5\right)=7x^3y^8\)
b) \(x^3y^4+2x^3y^4+3x^3y^4+...+nx^3y^4=820x^3y^4\)
c)
Tìm x biết (2a^3x^2y).(8a^2x^3y^4).(16a^3x^3y^3)
a)(-6x^3y^4+4x^4y^3):2x^3y^3. b)(5x^4y^2-x^3y^2):x^3y^2. c)(27x^3y^5+9x^2y^4-6x^3y^3):(-3x^2y^3)
a: \(\dfrac{-6x^3y^4+4x^4y^3}{2x^3y^3}\)
\(=\dfrac{-6x^3y^4}{2x^3y^3}+\dfrac{4x^4y^3}{2x^3y^3}\)
\(=-3y+2x\)
b: \(\dfrac{5x^4y^2-x^3y^2}{x^3y^2}=\dfrac{5x^4y^2}{x^3y^2}-\dfrac{x^3y^2}{x^3y^2}\)
\(=5x-1\)
c: \(\dfrac{27x^3y^5+9x^2y^4-6x^3y^3}{-3x^2y^3}\)
\(=-\dfrac{27x^3y^5}{3x^2y^3}-\dfrac{9x^2y^4}{3x^2y^3}+\dfrac{6x^3y^3}{3x^2y^3}\)
\(=-9xy^2-3y+2x\)
a) \(\dfrac{-6x^3y^4+4x^4y^3}{2x^3y^3}\)
\(=\dfrac{2x^3y^3\cdot\left(-3y+2x\right)}{2x^3y^3}\)
\(=-3y+2x\)
\(=2x-3y\)
b) \(\dfrac{5x^4y^2-x^3y^2}{x^3y^2}\)
\(=\dfrac{5x\cdot x^3y^2-x^3y^2\cdot1}{x^3y^2}\)
\(=\dfrac{x^3y^2\cdot\left(5x-1\right)}{x^3y^2}\)
\(=5x-1\)
c) \(\dfrac{27x^3y^5+9x^2y^4-6x^3y^3}{-3x^2y^3}\)
\(=\dfrac{-3x^2y^3\cdot-9xy^2+-3x^2y^3\cdot-3y+-3x^2y^3\cdot2x}{-3x^2y^3}\)
\(=\dfrac{-3x^2y^3\cdot\left(-9xy^2-3y+2x\right)}{-3x^2y^3}\)
\(=-9xy^2-3x+2x\)
giải các hệ phương trình
9x-6y=4 và 3(4x-3y)=-3x+y+7
3(x+1)+2y=-x và 5(x+y)=-3x+y-5
2(2x+3y)=3(2x-3y)+10 và 4x-3y=4(6y-2x)+3
Bài 1: Thực hiện phép tính
1, (3y +1/3y^4)^2
2, (-3x^2 -1/2x)^2
3, (x^2 +2x -3)^2
4, 3 (x+3) (x-3) - (x-9)^2
5, (x^n +x^n:1)^2
6, (5x-3y)^2 - (5x +3y)^2
Tính phép nhân
a, (3x-5) (x+4)
b, (2x-3y)(2x+3y)
a) \(\left(3x-5\right)\left(x+4\right)=3x^2+12x-5x-20=3x^2+7x-20\)
b) \(\left(2x-3y\right)\left(2x+3y\right)=\left(2x\right)^2-\left(3y\right)^2=4x^2-9y^2\)
thu gọn:5x^4-3x^3y+2xy^3-x^3y+2y^4-7x^2y^2-2x^3
5x^4-3x^3y+2xy^3-x^3y+2y^4-7x^2y-2x^3
= 5x^4+(3x^3y-x^3y)+2xy^3+2y^4-7x^2y-2x^3
=5x^4+2x^3y+2xy^3+2y^4-7x^2y-2x^3
\(5x^4-3x^3y+2xy^3-x^3y+2y^4-7x^2y^2-2x^3\)
\(=5x^4+\left(-3x^3y-x^3y\right)+2xy^3+2y^4-7x^2y^2-2x^3\)
\(=5x^4-4x^3y+2xy^3+2y^4-7x^2y^2-2x^3\)