Cho a,b,c là ba canhj của tam giác.Chứng minh \(a^2+b^2+c^2\) < 2\(\left(ab+bc+ac\right)\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho a,b,c là độ dài 3 cạnh của một tam giác.Chứng minh:\(ab+bc+ca\le a^2+b^2+c^2<2\left(ab+bc+ca\right)\)
Ta có :
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\) (1)
Vì \(a,b,c\)là độ dài 3 cạnh của một tam giác nên ta có :
\(a^2< a.\left(b+c\right)\)
\(\Rightarrow a^2< ab+ac\)
Tương tự :
\(b^2< ab+bc\)
\(c^2< ca+bc\)
\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ca\right)\) (2)
Từ (1) và (2)
=> Đpcm
Cho a, b, c là ba cạnh của tam giác. Chứng minh rằng:
\(2\left(ab+bc+ac\right)>a^2+b^2+c^2\)
Ai nhanh mình chọn!( Bài này chỉ để thử sức các bn, chứ mik biết lm rồi)
Áp dụng bất đăng thức tam giác vào tam giác đã cho ta được:
\(\hept{\begin{cases}a< b+c\\b< a+c\\c< a+b\end{cases}}\)
Ta có:
\(a^2+b^2+c^2=aa+bb+cc\)\(< a\left(c+b\right)+b\left(a+c\right)+c\left(a+b\right)\)
\(=ac+ab+ab+bc+ac+bc\)
\(=2ab+2ac+2bc\)
\(=2\left(ab+ac+bc\right)\) (đpcm)
Cho a,b,c là độ dài ba cạnh của một tam giác , chứng minh rằng :
\(a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)
Vì a,b,c là độ dài ba cạnh của một tam giác nên ta có :
\(\begin{cases}a+b>c\\c+a>b\\b+c>a\end{cases}\) \(\Leftrightarrow\begin{cases}ac+bc>c^2\\ab+bc>b^2\\ab+ac>a^2\end{cases}\) \(\Rightarrow a^2+b^2+c^2>2\left(ab+bc+ac\right)\)
Cho a, b, c là độ dài các cạnh của một tam giác. Chứng minh các phương trình sau có
nghiệm
a \(a^2x^2+\left(a^2+b^2-c^2\right)x+b^2=0\)
b \(x^2+\left(a+b+c\right)x+\left(ab+bc+ac\right)=0\)
a.
\(\Delta=\left(a^2+b^2-c^2\right)^2-4a^2b^2=\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)\)
\(=\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]\)
\(=\left(a-b-c\right)\left(a-b+c\right)\left(a+b-c\right)\left(a+b+c\right)\)
Do a;b;c là độ dài 3 cạnh của 1 tam giác nên:
\(\left\{{}\begin{matrix}a< b+c\Rightarrow a-b-c< 0\\a+c>b\Rightarrow a-b+c>0\\a+b>c\Rightarrow a+b-c>0\end{matrix}\right.\)
\(\Rightarrow\left(a-b-c\right)\left(a-b+c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\)
\(\Rightarrow\Delta< 0\)
\(\Rightarrow\) Phương trình vô nghiệm
Đề bài sai
b.
\(\Delta=\left(a+b+c\right)^2-4\left(ab+bc+ca\right)\)
\(=a^2+b^2+c^2-2ab-2bc-2ca\)
Do a;b;c là độ dài 3 cạnh của 1 tam giác nên:
\(\left\{{}\begin{matrix}a< b+c\\b< c+a\\c< a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2< ab+ac\\b^2< ab+bc\\c^2< ac+bc\end{matrix}\right.\)
\(\Rightarrow a^2+b^2+c^2< 2ab+2bc+2ca\)
\(\Rightarrow a^2+b^2+c^2-2ab-2bc-2ca< 0\)
\(\Rightarrow\Delta< 0\)
\(\Rightarrow\) Phương trình vô nghiệm
Đề bài sai
Dễ thấy : \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Rightarrow a+b\le\sqrt{2\left(a^2+b^2\right)}\)
Tương tự : \(b+c\le\sqrt{2\left(b^2+c^2\right)}\), \(c+a\le\sqrt{2\left(c^2+a^2\right)}\)
=> \(2\left(a+b+c\right)\le\sqrt{2}\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\)
\(\Leftrightarrow\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)
Cho a, b, c là độ dài ba cạnh của tam giác. Chứng minh rằng : \(a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)
-Theo bất đẳng thức trong tam giác ,ta có:
a+b>c\(\Rightarrow\)ac+bc>c^2
b+c>a\(\Rightarrow\)ba+ca>a^2
c+a>b\(\Rightarrow\)cb+ab>b^2
\(\Rightarrow\)ac+bc+ba+ca+cb+ab>a^2+b^2+c^2
\(\Rightarrow\)2(ab+bc+ca)>a^2+b^2+c^2
Cho a , b , c là ba cạnh của một tam giác . Chứng minh rằng : \(ab+bc+ca\le a^2+b^2+c^2<2\left(ab+bc+ca\right)\).
cho tam giác ABC, với AB=c, BC=a, AC=b, chứng minh rằng
\(\frac{a\left(b+c\right)\sqrt{bc\left(1-\frac{a^2}{b+c}\right)}+b\left(a+c\right)\sqrt{ac\left(1-\frac{b^2}{a+c}\right)}+c\left(a+b\right)\sqrt{ab\left(1-\frac{c^2}{a+b}\right)}}{a+b+c}\)
Cho 3 số thực khác nhau a,b,c.Chứng minh :
\(\frac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}-\frac{1}{\left(a-c\right)\left(c^2+ca-b^2-ba\right)}=\frac{1}{\left(a-b\right)\left(a^2+ab-c^2-cb\right)}\)