Những câu hỏi liên quan
HP
Xem chi tiết
H24
21 tháng 4 2021 lúc 15:55

Ta có:

x4x4 và 3x23x2≥0≥0 (do có số mũ chẵn )

Nếu Q(x)=x4+3x2+1=0x4+3x2+1=0

⇒x4+3x2=−1⇒x4+3x2=−1

Mà x4;3x2≥0x4;3x2≥0

⇒q(x)=x4+3x2+1⇒q(x)=x4+3x2+1 không có nghiệm

⇒dpcm

Bình luận (0)
 Khách vãng lai đã xóa
LD
21 tháng 4 2021 lúc 16:03

Q(x) = x4 + 3x2 + 1

Ta có : x4 ≥ 0 ∀ x ; 3x2 ≥ 0 ∀ x

=> x4 + 3x2 + 1 ≥ 1 > 0 ∀ x

hay Q(x) không có nghiệm (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
NG
Xem chi tiết
MN
25 tháng 10 2018 lúc 20:34

\(A=\left(x-y\right)^2\left(z^2-2z+1\right)-2\left(z-1\right)\left(x-y\right)^2+\left(x-y\right)^2\)

\(A=\left(x-y\right)^2\left(z-1\right)^2-2\left(x-y\right)\left(z-1\right)\left(x-y\right)+\left(x-y\right)^2\)

\(A=\left[\left(x-y\right)\left(z-1\right)-\left(x-y\right)\right]^2\ge0\) \(\forall x,y,z\)

Bình luận (0)
LP
Xem chi tiết
NG
Xem chi tiết
SK
Xem chi tiết
NH
Xem chi tiết
H24
17 tháng 12 2016 lúc 19:25

lop 7 lam gi co nghiem voi da thuc ha ban

Bình luận (0)
NH
18 tháng 12 2016 lúc 19:14

Đề thi HSG lớp 7 đó bạn

Bình luận (0)
TV
Xem chi tiết
TC
7 tháng 5 2022 lúc 23:17

\(P\left(0\right)=3.0^4+0^3-0^2+\dfrac{1}{4}.0=0+0-0+0=0\)

\(Q\left(0\right)=0^4-4.0^3+0^2-4=0-0+0-4=-4\)

vậy Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)

Bình luận (0)
TC
7 tháng 5 2022 lúc 23:15

thu gọn

\(P\left(x\right)=3x^4+x^3\left(-2x^2+x^2\right)+\dfrac{1}{4}x=3x^4+x^3-x^2+\dfrac{1}{4}x\)

\(Q\left(x\right)=x^4-4x^3+\left(3x^2-2x^2\right)-4=x^4-4x^3+x^2-4\)

Bình luận (0)
AH
7 tháng 5 2022 lúc 23:17

Lời giải:
Ta thấy:

$P(0)=-2.0^2+3.0^4+0^3+0^2-\frac{1}{4}.0=0$ nên $x=0$ là nghiệm của $P(x)$

$Q(0)=0^4+3.0^2-4-4.0^3-2.0^2=-4\neq 0$

Do đó $x=0$ không phải nghiệm của $Q(x)$

Bình luận (2)
EG
Xem chi tiết
JP
Xem chi tiết
NT
26 tháng 2 2022 lúc 22:30

a: \(\text{Δ}=\left(2m-2\right)^2-4\left(2m-3\right)\)

\(=4m^2-8m+4-8m+12\)

\(=4m^2-16m+16\)

\(=\left(2m-4\right)^2>=0\)

Do đó: Phương trình luôn có nghiệm

b: Để phương trình có hai nghiệm trái dấu thì 2m-3<0

hay m<3/2

c: Để phương trình có hai nghiệm sao cho nghiệm này gấp đôi nghiệm kia thì ta có hệ phương trình:

\(\left\{{}\begin{matrix}x_1-2x_2=0\\x_1+x_2=2m-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x_2=-2m+2\\x_1=2x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-2}{3}\\x_1=\dfrac{4m-4}{3}\end{matrix}\right.\)

Ta có: \(x_1x_2=2m-3\)

\(\Leftrightarrow2m-3=\dfrac{2m-2}{3}\cdot\dfrac{4m-4}{3}\)

\(\Leftrightarrow8\left(m-1\right)^2=9\left(2m-3\right)\)

\(\Leftrightarrow8m^2-16m+8-18m+27=0\)

\(\Leftrightarrow8m^2-34m+35=0\)

\(\text{Δ}=\left(-34\right)^2-4\cdot8\cdot35=36>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{34-6}{16}=\dfrac{28}{16}=\dfrac{7}{4}\\m_2=\dfrac{34+6}{16}=\dfrac{40}{16}=\dfrac{5}{2}\end{matrix}\right.\)

Bình luận (0)