Những câu hỏi liên quan
ND
Xem chi tiết
DH
26 tháng 2 2017 lúc 12:22

Sủa lại đề nha : \(\left|\left(3x+4\right)^2+\left|y-5\right|\right|=1\)

Vì \(\left(3x+4\right)^2\ge0\) ; \(\left|y-5\right|\ge0\)

\(\Rightarrow\left(3x+4\right)^2+\left|y-5\right|\ge0\)

\(\Rightarrow\left|\left(3x+4\right)^2+\left|y-5\right|\right|=\left(3x+4\right)^2+\left|y-5\right|\)

\(\Rightarrow\left(3x+4\right)^2+\left|y-5\right|=1=0+1=1+0\)

Nếu \(\left(3x+4\right)^2=0\) thì \(\left|y-5\right|=1\) => \(x=-\frac{4}{3}\) thì \(y=4;6\)

Nếu \(\left(3x+4\right)^2=1\) thì \(\left|y+5\right|=0\) =? \(x=-\frac{5}{3};-1\) thì y = \(-5\)

=> cặp ( x;y ) thỏa mãn đề bài là ( -4/3; 4 ); (-4/3;6) ; (-5/3;-5) ; (-1;5)

Mà x ; y nguyên => ( x;y ) = ( -1;5 )

Vậy có 1 cặp (x;y) thỏa mãn

Bình luận (0)
PL
26 tháng 2 2018 lúc 9:56

Đáp án đúng là 1 đó bạn . Mk làm rùi

Bình luận (0)
NA
Xem chi tiết
LH
Xem chi tiết
NV
Xem chi tiết
DH
3 tháng 8 2021 lúc 20:37

\(\frac{3}{x}+\frac{y}{3}=\frac{5}{6}\)

\(\Leftrightarrow\frac{9+xy}{3x}=\frac{5}{6}\)

\(\Rightarrow54+6xy=15x\)

\(\Leftrightarrow x\left(5-2y\right)=18\)

Vì \(x,y\)là số nguyên nên \(x,5-2y\)là các ước của \(18\), mà \(5-2y\)là số lẻ. 

Ta có bảng giá trị: 

5-2y-9-3-1139
x-2-6-181862
y74321-2
Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
ND
18 tháng 12 2015 lúc 17:22

ai tick cho mk lên 50 điểm hỏi đáp 

xin chân thành cảm ơn các bạn

Bình luận (0)
HU
Xem chi tiết
NM
9 tháng 12 2014 lúc 20:19

0 ko phai so nguyen ma ban 

 

Bình luận (0)
NH
27 tháng 1 2016 lúc 17:48
a,có 2 cặp

b,vô hạn căp

Bình luận (0)
LH
30 tháng 1 2016 lúc 20:30

0 không phải số nguyên

Bình luận (0)
H24
Xem chi tiết
H24
24 tháng 4 2023 lúc 20:45

\(xy-\left(x+2y\right)=3\)
\(xy-x-2y=3\)
\(y\left(x-2\right)-x=3\)
\(y\left(x-2\right)-x+2=3+2\)
\(y\left(x-2\right)-\left(x-2\right)=5\)
\(\left(y-1\right)\left(x-2\right)=5\)
Ta có bảng sau:

\(y-1\)\(1\)\(5\)\(-1\)\(-5\)
\(x-2\)\(5\)\(1\)\(-5\)\(-1\)
\(y\)\(2\)\(6\)\(0\)\(-4\)
\(x\)\(7\)\(3\)\(-3\)\(1\)

Vậy các cặp \(\left(x;y\right)\) là \(\left(7;2\right);\left(3;6\right);\left(-3;0\right);\left(1;-4\right)\)

Bình luận (0)
NT
24 tháng 4 2023 lúc 20:45

=>xy-x-2y=3

=>x(y-1)-2y+2=5

=>(x-2)(y-1)=5

=>\(\left(x-2;y-1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(3;6\right);\left(7;3\right);\left(1;-4\right);\left(-3;0\right)\right\}\)

Bình luận (0)
CC
Xem chi tiết
2U
31 tháng 12 2019 lúc 15:17

Xét điểm M(a;b) bất kì nằm trog ( tính cả biên ) của hình tròn ( \(C_n\)) : \(x^2+y^2\le n^2\)

Mỗi điểm M như vậy tương ứng với 1 và chỉ 1 hình vuông đơn vị S(M) mà M là đỉnh ở goc trái , phía dưới 

Từ đó suy ra \(S_n\)= số hình vuông S (M) = tổng diện tích của S(M) với \(M\in\left(C_n\right)\)

Rõ ràng các hình vuông S(M) , với \(M\in\left(C_{ }_n\right)\)đều nằm trog hình tròn \(\left(C_{n+\sqrt{2}}\right):x^2+y^2\le\left(n+\sqrt{2}\right)^2\)

Do đó : \(S_n\le\pi\left(n+\sqrt{2}\right)^2\)(1) 

Tương tự như vậy , ta thấy các hình vuông S(M) , với \(M\in\left(C_n\right)\)phủ kín hình tròn

\(\left(C_{n-\sqrt{2}}\right):x^2+y^2\le\left(n-\sqrt{2}\right)^2\)vì thế \(S_n\ge\pi\left(n-\sqrt{2}\right)^2\)(2)

Từ (1) và (2) suy ra \(\sqrt{\pi}\left(n-\sqrt{2}\right)\le\sqrt{S_n}\le\sqrt{\pi}\left(n+\sqrt{2}\right)\)

suy ra \(\sqrt{\pi}\left(1-\frac{\sqrt{2}}{n}\right)\le\frac{\sqrt{S_n}}{n}\le\sqrt{\pi}\left(1+\frac{\sqrt{2}}{n}\right)\)

Mà lim \(\sqrt{\pi}\left(1-\frac{\sqrt{2}}{n}\right)\)= lim\(\sqrt{\pi}\left(1+\frac{\sqrt{2}}{n}\right)=\sqrt{\pi}\)nên lim \(\sqrt{\frac{S_n}{n}}=\sqrt{\pi}\)

Bình luận (0)
 Khách vãng lai đã xóa
NC
31 tháng 12 2019 lúc 21:30

@ Huy @ Bài làm đánh đẹp lắm. Nhưng cô cũng không hiểu được rõ  ràng là toán 6 sao có lim, phương trình đường tròn;...                      ( lớp 11 , 12 ) ở đây.

 Lần sau chú ý giải Toán 6 không cần dùng kiến thức quá cao nhé.

Tuy nhiên đề bài bạn thiếu. Lần sau em có thể sửa lại đề bài trước rồi hẵng làm nha.

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết