Bài 3: Lôgarit

HA

Có bao nhiêu cặp số nguyên (x,y) thoả mãn 2<x<20210 và log2(x+2^y-1) -2^y= y-2x

 

NL
27 tháng 2 2023 lúc 23:57

Đề là \(log_2\left(x+2^{y-1}\right)-2^y=y-2x\) đúng ko nhỉ?

Đặt \(log_2\left(x+2^{y-1}\right)=z>0\)

\(\Rightarrow x+2^{y-1}=2^z\)

Ta được: \(\left\{{}\begin{matrix}z-2^y=y-2x\\x+2^{y-1}=2^z\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}z-2^y=y-2x\\2.2^z=2x+2^y\end{matrix}\right.\)

Cộng vế: \(\Rightarrow2^{z+1}+z=2^{y+1}+y\)

Hàm \(f\left(t\right)=2^{t+1}+t\) có \(f'\left(t\right)=2^{t+1}.ln2+1>0\) nên đồng biến trên miền xác định

\(\Rightarrow z=y\)

Thế vào \(z-2^y=y-2x\Rightarrow y-2^y=y-2x\)

\(\Rightarrow2^y=2x\Rightarrow y=log_2\left(2x\right)\)

Ứng với mỗi giá trị của x cho đúng 1 giá trị của y và ngược lại

Do \(2< x< 20210\Rightarrow2< y< log_2\left(2.20210\right)\approx15,1\)

\(\Rightarrow y=\left\{3;4;5;...;15\right\}\) có 13 giá trị nên có 13 cặp thỏa mãn

Bình luận (2)

Các câu hỏi tương tự
DH
Xem chi tiết
H24
Xem chi tiết
MN
Xem chi tiết
NP
Xem chi tiết
MA
Xem chi tiết
H24
Xem chi tiết
MN
Xem chi tiết
MN
Xem chi tiết
QT
Xem chi tiết