c/m 1/1.2.3 + 1/2.3.4 + 1/3.4.5 +.......+ 1/18.19.20 < 1/4
1/1.2.3+1/2.3.4+1/3.4.5+...+1/18.19.20
help me please:))))) thanks
Lời giải:
Gọi tổng trên là $A$
$A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}$
$2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{18.19.20}$
$=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+....+\frac{20-18}{18.19.20}$
$=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{18.19}-\frac{1}{19.20}$
$=\frac{1}{1.2}-\frac{1}{19.20}=\frac{189}{380}$
$\Rightarrow A=\frac{189}{760}$
Chứng minh:
A=1/1.2.3+1/2.3.4+1/3.4.5+...+1/18.19.20 < 1/4
các bạn ơi gúp mk với
1/1.2.3+1/2.3.4+1/3.4.5+....+1/18.19.20
B= 1/ 1.2.3 + 1/ 2.3 4 + 1/ 3.4.5 + .... + 1/ 48.49.50
Mà ta có:
1/ 1.2 - 1/ 2.3 = 2/ 1.2.3
1/ 2.3 - 1/3.4 = 2/ 2.3.4
Từ đó=> B = 1/2 . ( 2/ 1.2.3 + 2/ 2,3.4 + ... + 2/ 18. 19. 20 )
= 1/2 .( 1/ 1.2 – 1/ 2.3 + 1/ 2.3 - .....- 1/19.20)
= 1/2. ( 1/ 1.2 – 1/ 19.20 ) = 1/ 2 . 189/380 = 189/760
1.CMR:\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}=\frac{1}{2}\cdot\left(\frac{1}{1.2}-\frac{1}{2.3}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)=\frac{1}{2}\cdot\left(\frac{1}{2}-\frac{1}{19.20}\right)=\frac{1}{4}-\frac{1}{2.19.20}
B=\(\frac{36}{1.3.5}+\frac{36}{3.5.7}+\frac{36}{5.7.9}+...+\frac{36}{25.27.29}< 3\)
7. C/m
A = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}<\frac{1}{4}\)
( Dấu chấm là dấu nhân )
A=1/2{(1/1*2-1/2*3)+(1/2*3-1/3*4)+(1/3*4-1/4*5)+...+(1/18*19-1/19*20)}
=1/2{1/1*2-1/19*20}
=1/2*189/380
=189/760
vì 189/760<1/4
nên A=...<1/4
1. Chứng minh rằng:
a) A = 1/ 1.2.3 + 1/2.3.4 + 1/3.4.5 + .... + 1/ 18.19.20 < 1/4
b ) B = 36/1.2.3 + 36/3.5.7 + .... + 36/25.27.29 < 3
Giúp mình nha , cảm ơn nhiều lắm !!
dùng công thức \(\dfrac{2m}{a\left(a+m\right)\left(a+2m\right)}=\dfrac{1}{a\left(a+m\right)}-\dfrac{1}{\left(a+m\right)\left(a+2m\right)}\)để chứng tỏ rằng:
\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{18.19.20}< \dfrac{1}{4}\)
\(2A=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{18.19.20}\)
\(\Rightarrow2A=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{18.19}-\dfrac{1}{19.20}\)
\(\Rightarrow2A=\dfrac{1}{1.2}-\dfrac{1}{19.20}< \dfrac{1}{1.2}\)
\(\Rightarrow2A< \dfrac{1}{2}\)
\(\Rightarrow A< \dfrac{1}{4}\) (đpcm)
dùng công thức \(\dfrac{2m}{a\left(a+m\right)\left(a+2m\right)}=\dfrac{1}{a\left(a+m\right)}-\dfrac{1}{\left(a+m\right)\left(a+2m\right)}\)để chứng tỏ rằng:
\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{18.19.20}< \dfrac{1}{4}\)
1) tính :
a) 2/ 1.2.3 + 2/ 2.3.4 + ...+ 2/ 98.99.100
b) 4/ 2.4.6 + 4/ 4.6.8 + ...+ 4/ 50.52.54
c) 8/ 1.3.5 + 8/ 3.5.7 + ...+ 8/ 18.19.20
d) 1/ 1.2.3 + 1/ 2.3.4 + ... + 1/ 18.19.20