Những câu hỏi liên quan
JE
Xem chi tiết
NL
6 tháng 2 2021 lúc 20:37

\(a=\lim\dfrac{1}{\sqrt{4n+1}+2\sqrt{n}}=\dfrac{1}{\infty}=0\)

\(b=\lim n\left(\sqrt{1+\dfrac{2}{n}}-\sqrt{1-\dfrac{2}{n}}-1\right)=+\infty.\left(-1\right)=-\infty\)

\(c=\lim4^n\left(\sqrt{\left(\dfrac{9}{16}\right)^n-\left(\dfrac{3}{16}\right)^n}-1\right)=+\infty.\left(-1\right)=-\infty\)

\(d=\lim n^3\left(3+\dfrac{2}{n}+\dfrac{1}{n^2}\right)=+\infty.3=+\infty\)

Bình luận (2)
JE
Xem chi tiết
NL
5 tháng 2 2021 lúc 21:16

\(\lim\dfrac{\sqrt{\left(3-4n\right)^2+1}+an-1}{\sqrt{n^2+4n+1}+an}=\lim\dfrac{\sqrt{\left(\dfrac{3}{n}-4\right)^2+\dfrac{1}{n}}+a-\dfrac{1}{n}}{\sqrt{1+\dfrac{4}{n}+\dfrac{1}{n^2}}+an}\)

\(=\dfrac{4+a}{1+a}=2\Leftrightarrow4+a=2a+2\Rightarrow a=2\)

Bình luận (0)
MM
Xem chi tiết
NL
13 tháng 2 2022 lúc 21:59

\(\lim\left(\sqrt{4n^2+5n}-2n\right)=\lim\dfrac{5n}{\sqrt{4n^2+5n}+2n}=\lim\dfrac{5}{\sqrt{4+\dfrac{5}{n}}+2}=\dfrac{5}{\sqrt{4+0}+2}=\dfrac{5}{4}\)

\(\lim\left(\sqrt{2n+1}-\sqrt{n}\right)=\lim\sqrt{n}\left(\sqrt{2+\dfrac{1}{n}}-1\right)=+\infty.\left(\sqrt{2}-1\right)=+\infty\) (do \(\sqrt{2}-1>0\))

Bình luận (0)
MH
13 tháng 2 2022 lúc 22:00

\(a,lim\left(\sqrt{4n^2+5n}-2n\right)\)

\(=limn\left(\sqrt{4+\dfrac{5}{n}}-2\right)=n.0=0\)

\(b,lim\left(\sqrt{2n+1}-\sqrt{n}\right)\)

\(=lim\sqrt{n}\left(\sqrt{2+\dfrac{1}{n}}-1\right)=\sqrt{n}\left(\sqrt{2}-1\right)=+\infty\)

Bình luận (0)
DH
Xem chi tiết
NL
17 tháng 1 2021 lúc 13:22

\(a=\lim\left(\dfrac{2n^3\left(5n+1\right)+\left(2n^2+3\right)\left(1-5n^2\right)}{\left(2n^2+3\right)\left(5n+1\right)}\right)\)

\(=\lim\left(\dfrac{2n^3-13n^2+3}{\left(2n^2+3\right)\left(5n+1\right)}\right)=\lim\dfrac{2-\dfrac{13}{n}+\dfrac{3}{n^3}}{\left(2+\dfrac{3}{n^2}\right)\left(5+\dfrac{1}{n}\right)}=\dfrac{2}{2.5}=\dfrac{1}{5}\)

\(b=\lim\left(\dfrac{n-2}{\sqrt{n^2+n}+\sqrt{n^2+2}}\right)=\lim\dfrac{1-\dfrac{2}{n}}{\sqrt{1+\dfrac{1}{n}}+\sqrt{1+\dfrac{2}{n}}}=\dfrac{1}{2}\)

\(c=\lim\dfrac{\sqrt{1+\dfrac{3}{n^3}-\dfrac{2}{n^4}}}{2-\dfrac{2}{n}+\dfrac{3}{n^2}}=\dfrac{1}{2}\)

\(d=\lim\dfrac{\sqrt{1-\dfrac{4}{n}}-\sqrt{4+\dfrac{1}{n^2}}}{\sqrt{3+\dfrac{1}{n^2}}-1}=\dfrac{1-2}{\sqrt{3}-1}=-\dfrac{1+\sqrt{3}}{2}\)

Bình luận (0)
DB
15 tháng 3 2022 lúc 20:57

Lim 3.4n-2.13n/5n+6.13n

Bình luận (0)
JP
Xem chi tiết
NT
20 tháng 11 2023 lúc 20:08

\(\lim\limits\dfrac{\sqrt{4n^2+1}+2n-1}{\sqrt{n^2+4n+1}+n}\)

\(=\lim\limits\dfrac{\sqrt{4+\dfrac{1}{n^2}}+2-\dfrac{1}{n}}{\sqrt{1+\dfrac{4}{n}+\dfrac{1}{n^2}}+1}=\dfrac{2+2}{1+1}=\dfrac{4}{2}=2\)

\(\lim\limits\left[\sqrt{n}\left(\sqrt{n+1}-n\right)\right]\)

\(=\lim\limits\left[\sqrt{n^2+n}-\sqrt{n^3}\right]\)

\(=\lim\limits\dfrac{n^2+n-n^3}{\sqrt{n^2+n}+\sqrt{n^3}}\)

\(=\lim\limits\dfrac{n^3\left(-1+\dfrac{1}{n}+\dfrac{1}{n^2}\right)}{\sqrt{n^3\left(\dfrac{1}{n}+\dfrac{1}{n^2}\right)}+\sqrt{n^3}}\)

\(=\lim\limits\dfrac{n^3\left(-1+\dfrac{1}{n}+\dfrac{1}{n^2}\right)}{\sqrt{n^3}\left(\sqrt{\dfrac{1}{n}+\dfrac{1}{n^2}}+1\right)}\)

\(=\lim\limits\dfrac{n\sqrt{n}\left(-1+\dfrac{1}{n}+\dfrac{1}{n^2}\right)}{\sqrt{\dfrac{1}{n}+\dfrac{1}{n^2}}+1}\)

\(=-\infty\) vì \(\left\{{}\begin{matrix}lim\left(n\sqrt{n}\right)=+\infty\\lim\left(\dfrac{-1+\dfrac{1}{n}+\dfrac{1}{n^2}}{\sqrt{\dfrac{1}{n}+\dfrac{1}{n^2}}+1}\right)=-\dfrac{1}{1}=-1< 0\end{matrix}\right.\)

Bình luận (0)
KT
Xem chi tiết
AM
5 tháng 2 2022 lúc 5:25

Điều kiện: \(\left\{{}\begin{matrix}4n+2\ge0\\4n-1\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}n\ge-\dfrac{1}{2}\\n\ge\dfrac{1}{4}\end{matrix}\right.\)\(\Rightarrow n\ge\dfrac{1}{4}\)

Ta có: \(lim_{n\rightarrow+\infty}\left(\dfrac{3n-1}{\sqrt{4n+2}-\sqrt{4n-1}}\right)=\)

\(lim_{n\rightarrow+\infty}\left(\dfrac{3-\dfrac{1}{n}}{\sqrt{\dfrac{4}{n}+\dfrac{2}{n^2}}-\sqrt{\dfrac{4}{n}-\dfrac{1}{n^2}}}\right)=+\infty\)

Bình luận (1)
NT
Xem chi tiết
BB
Xem chi tiết
DH
Xem chi tiết
HH
16 tháng 2 2021 lúc 21:48

a/ Bạn coi lại đề bài, 3n^2 +n^2 thì bằng 4n^2 luôn chứ ko ai cho đề bài như vậy cả

b/ \(\lim\limits\dfrac{\dfrac{n^3}{n^3}+\dfrac{3n}{n^3}+\dfrac{1}{n^3}}{-\dfrac{n^3}{n^3}+\dfrac{2n}{n^3}}=-1\)

c/ \(=\lim\limits\dfrac{-\dfrac{2n^3}{n^2}+\dfrac{3n}{n^2}+\dfrac{1}{n^2}}{-\dfrac{n^2}{n^2}+\dfrac{n}{n^2}}=\lim\limits\dfrac{-2n}{-1}=+\infty\)

d/ \(=\lim\limits\left[n\left(1+1\right)\right]=+\infty\)

e/ \(\lim\limits\left[2^n\left(\dfrac{2n}{2^n}-3+\dfrac{1}{2^n}\right)\right]=\lim\limits\left(-3.2^n\right)=-\infty\)

f/ \(=\lim\limits\dfrac{4n^2-n-4n^2}{\sqrt{4n^2-n}+2n}=\lim\limits\dfrac{-\dfrac{n}{n}}{\sqrt{\dfrac{4n^2}{n^2}-\dfrac{n}{n^2}}+\dfrac{2n}{n}}=-\dfrac{1}{2+2}=-\dfrac{1}{4}\)

g/ \(=\lim\limits\dfrac{n^2+3n-1-n^2}{\sqrt{n^2+3n-1}+n}+\lim\limits\dfrac{n^3-n^3+n}{\sqrt[3]{\left(n^3-n\right)^2}+n.\sqrt[3]{n^3-n}+n^2}\)

\(=\lim\limits\dfrac{\dfrac{3n}{n}-\dfrac{1}{n}}{\sqrt{\dfrac{n^2}{n^2}+\dfrac{3n}{n^2}-\dfrac{1}{n^2}}+\dfrac{n}{n}}+\lim\limits\dfrac{\dfrac{n}{n^2}}{\dfrac{\sqrt[3]{\left(n^3-n\right)^2}}{n^2}+\dfrac{n\sqrt[3]{n^3-n}}{n^2}+\dfrac{n^2}{n^2}}\)

\(=\dfrac{3}{2}+0=\dfrac{3}{2}\)

Bình luận (4)
DH
17 tháng 2 2021 lúc 8:05

a) lim \(\left(-3n^3+n^2-1\right)\)

Bình luận (0)
NA
25 tháng 3 2021 lúc 17:39

minh le oi ban dao mau so cua ban len cho tu uong roi thay vi tri cua mau thanh n3 +2n

Bình luận (0)
 Khách vãng lai đã xóa