Cho a,b,c dương, 0<a,b,c<1/2, thỏa a+b+c=1. CMR: a^3+b^3+c^3+2*(ab+bc+ca)<=25/32
cho a,b dương và c ≠ 0 thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\). CMR: \(\sqrt{a+b}=\sqrt{b+c}+\sqrt{c+a}\)
Từ 1a+1b+1c=0⇒ab+bc+ac=01a+1b+1c=0⇒ab+bc+ac=0
Khi đó:
(√a+c+√b+c)2=a+c+b+c+2√(a+c)(b+c)(a+c+b+c)2=a+c+b+c+2(a+c)(b+c)
=a+b+2c+2√ab+ac+bc+c2=a+b+2c+2√c2=a+b+2c+2ab+ac+bc+c2=a+b+2c+2c2
=a+b+2c+2|c|=a+b+2c+2|c|
Vì a,ba,b dương nên −1c=1a+1b>0⇒c<0⇒2|c|=−2c−1c=1a+1b>0⇒c<0⇒2|c|=−2c
Do đó:
(√a+c+√b+c)2=a+b+2c+2|c|=a+b+2c+(−2c)=a+b(a+c+b+c)2=a+b+2c+2|c|=a+b+2c+(−2c)=a+b
⇒√a+c+√b+c=√a+b
Từ 1a+1b+1c=0⇒ab+bc+ac=01a+1b+1c=0⇒ab+bc+ac=0
Khi đó:
(√a+c+√b+c)2=a+c+b+c+2√(a+c)(b+c)(a+c+b+c)2=a+c+b+c+2(a+c)(b+c)
=a+b+2c+2√ab+ac+bc+c2=a+b+2c+2√c2=a+b+2c+2ab+ac+bc+c2=a+b+2c+2c2
=a+b+2c+2|c|=a+b+2c+2|c|
Vì a,ba,b dương nên −1c=1a+1b>0⇒c<0⇒2|c|=−2c−1c=1a+1b>0⇒c<0⇒2|c|=−2c
Do đó:
(√a+c+√b+c)2=a+b+2c+2|c|=a+b+2c+(−2c)=a+b(a+c+b+c)2=a+b+2c+2|c|=a+b+2c+(−2c)=a+b
⇒√a+c+√b+c=√a+b
Bài 10. Cho biểu thức : a ^ 2 = b ^ 5 - b ^ 4.c . Trong 3 số a, b, c có một số dương, một số âm và một số bằng 0. Hãy chỉ rõ số dương, số âm và số 0
TH1: a là dương; b là số âm; c là 0
Ta có: \(a^2>0\)
\(\Rightarrow b^5-b^4c=b^5-b^4.0=b^5-0=b^5>0\)
\(\Rightarrow a^2=b^5\) (vô lí)
TH2: a là 1 số âm, b là số dương, c là số 0
Ta có: \(a^2>0\)
\(\Rightarrow b^5-b^4c=b^5>0\)
\(\Rightarrow a^2=b^5\) (thỏa mãn)
Vậy trong 3 số a là số âm, b là số dương, c là số 0
TH1: a là dương; b là số âm; c là 0
Ta có:
(vô lí)
TH2: a là 1 số âm, b là số dương, c là số 0
Ta có:
(thỏa mãn)
Vậy trong 3 số a là số âm, b là số dương, c là số 0
cho các số thực a, b , c thỏa mãn a+b+c >0; ab+bc+ca>0 và abc>0, CMR a,b,c là các số dương
Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).Vậy điều giả sử trên là sai,
a,b,c là 3 số dương.
Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).
Vậy điều giả sử trên là sai,
Do đó a,b,c là 3 số dương.
Cho 3 số nguyên a,b,c trong đó có 1 số âm, 1 số dương, 1 số 0. Biết IaI+b^2.c=b^3
Số dương? số âm? số 0?
a là số âm
b là số dương
c là số 0
tiick nha
cho a b c thuộc z ,b khác 0 chứng minh c(a+b) - b(c-b) - c*a là dương
Cho a+b+c > 0 ; ab+bc+ca > 0 ; abc>0
Cm cả 3 số a,b,c đều dương
Cho a, b, c là các số nguyên dương thỏa mãn:
a + b + c > 0; ab + bc + ca; abc > 0
Chứng minh rằng cả 3 số đều là các số nguyên dương.
Cho các số a,b,c thỏa mãn abc>0, ab+bc+ac >0, a+b+c>0
Chứng minh rằng a+b+c là các số dương
Đề đúng: Cho a,b,c thỏa mãn a+b+c>0; ab+bc+ac>0; abc>0. Chứng minh a,b,c>0
Vì abc>0 nên có ít nhất 1 số lớn hơn 0
Vai trò của a, b, c như nhau nên chọn a>0
TH1: b<0;c<0
\(\Rightarrow b+c>-a\Rightarrow\left(b+c\right)^2< -a\left(b+c\right)\)
\(\Rightarrow b^2+2bc+c^2< -ab-ac\)
\(\Rightarrow b^2+bc+c^2< -\left(ab+bc+ca\right)\)(vô lí)
TH2: b>0, c>0 thì a>0( luôn đúng)
Vậy a, b, c >0
1) Cho 3 số a,b,c có 1 số dương, 1 số âm và 1 số bằng 0 thỏa mãn: a=b.(b-c) .hỏi số nào bằng 0, số nào dương, số nào âm?
2) Cho P=(x-1).(x-9)
a) Tìm số nguyên x để P<0
b) Tìm số nguyên x để P>0
1) ta có 1 = -1.(-1-0)
=> a là số nguyên dương vì = 1
=> b là số nguyên âm vì = -1
=> c là số không vì = 0
Cho ba số thực a,b,c sao cho: \(\hept{\begin{cases}a+b+c>0\\ab+ac+bc>0\\abc>0\end{cases}}\)
cmr a,b,c dương