Bài 1 :Cho a,b,c dương thỏa mãn a+b+c=2
CMR \(\frac{bc}{\sqrt{3a^2+4}}+\frac{ca}{\sqrt{3b^2+4}}+\frac{ab}{\sqrt{3c^2+4}}\ge\frac{\sqrt{3}}{3}\)
Bài 2:Cho a,b,c>0. CMR
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
cho a;b;c là các số thực dương thỏa mãn abc=1.CMR:
\(a^3+b^3+c^3+4\left(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}\right)\ge9\)
cho a,b,c>0 thỏa mãn abc=1.
CMR:\(\dfrac{a}{ab+1}+\dfrac{b}{bc+1}+\dfrac{c}{ca+1}\ge\dfrac{3}{2}\)
Cho a,b,c là 3 số dương thỏa a+b+c \(\le\)1.CMR:
\(\frac{3}{ab+bc+ca}+\frac{2}{a^2+b^2+c^2}>14\)
Cho a,b,c > 0 thỏa mãn a+b=3-c . CMR:
\(a^3+b^3+c^3+2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\left(ab+bc+ca\right)\)
Cho 3 số thực dương a,b,c thỏa ab + bc+ ca = 3. CMR:
\(\frac{1}{1+a^2\left(b+c\right)}+\frac{1}{1+b^2\left(a+c\right)}+\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{abc}\)
Cho các số thực dương a,b,c thỏa mãn \(3\left(ab+bc+ca\right)=1\). CMR:
\(\frac{a}{a^2-bc+1}+\frac{b}{b^2-ca+1}+\frac{c}{c^2-ab+1}\ge\frac{1}{a+b+c}\)
Cho a,b,c là các số dương thỏa mãn: ab + bc + ca = 3abc
CMR: \(\frac{1}{\sqrt{a^3+b}}+\frac{1}{\sqrt{b^3+c}}+\frac{1}{\sqrt{c^3+a}}\le\frac{3\sqrt{2}}{2}\)
cho 3 số dương a,b,c thỏa mãn ab+bc+ca=abc. CMR;
\(\frac{a^2}{a+bc}+\frac{b^2}{b+ca}+\frac{c^2}{c+ba}>=\frac{a+b+c}{4}\)