Những câu hỏi liên quan
MC
Xem chi tiết
NT
1 tháng 3 2022 lúc 9:38

a. TH1:

\(\left\{{}\begin{matrix}x^2+3x-4< 0\\3-2x>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x< 1\\x>-4\end{matrix}\right.\\x>\dfrac{3}{2}\end{matrix}\right.\)

TH2:

\(\left\{{}\begin{matrix}x^2+3x-4>0\\3-2x< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>1\\x< -4\end{matrix}\right.\\x< \dfrac{3}{2}\end{matrix}\right.\)

Vậy nghiệm của BPT:

\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x< 1\\x>-4\end{matrix}\right.\\x>\dfrac{3}{2}\end{matrix}\right.\)      \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>1\\x< -4\end{matrix}\right.\\x< \dfrac{3}{2}\end{matrix}\right.\)

Bình luận (0)
HP
Xem chi tiết
H24
18 tháng 9 2023 lúc 16:45

loading...  

Bình luận (0)
NT
18 tháng 9 2023 lúc 19:35

a) \(\left(x+1\right)\left(x-1\right)\left(3x-6\right)>0\)

Lập bảng xét dấu ta được kết quả :

\(Bpt\Leftrightarrow\left[{}\begin{matrix}-1< x< 1\\x>2\end{matrix}\right.\)

b) \(\dfrac{x+3}{x-2}\le0\)

Lập bảng xét dấu ta được kết quả :

\(Bpt\Leftrightarrow-3\le x< 2\)

d) \(\dfrac{2x-5}{3x+2}< \dfrac{3x+2}{2x-5}\)

\(\Leftrightarrow\dfrac{2x-5}{3x+2}-\dfrac{3x+2}{2x-5}< 0\)

\(\Leftrightarrow\dfrac{\left(2x-5\right)^2-\left(3x+2\right)^2}{\left(3x+2\right)\left(2x-5\right)}< 0\)

\(\Leftrightarrow\dfrac{\left(2x-5+3x+2\right)\left(2x-5-3x-2\right)}{\left(3x+2\right)\left(2x-5\right)}< 0\)

\(\Leftrightarrow\dfrac{-\left(5x-3\right)\left(x+7\right)}{\left(3x+2\right)\left(2x-5\right)}< 0\)

Lập bảng xét dấu ta được kết quả :

\(Bpt\Leftrightarrow\left[{}\begin{matrix}-7< x< -\dfrac{2}{3}\\\dfrac{5}{3}< x< \dfrac{5}{2}\end{matrix}\right.\)

Bình luận (0)
HP
Xem chi tiết
NT
30 tháng 10 2023 lúc 10:24

loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  

Bình luận (0)
MC
Xem chi tiết
N2
1 tháng 3 2022 lúc 9:13

tách nhỏ câu hỏi ra nhé dài quá

Bình luận (6)
DK
Xem chi tiết
MS
Xem chi tiết
TQ
28 tháng 1 2022 lúc 12:14

1) \(ĐK:x\ne2\) 

Nếu \(x>2\) 

BPT ⇔ \(x^2-2x+5-\left(x-1\right)\left(x-2\right)\ge0\) ⇔ \(x^2-2x+5-\left(x^2-3x+3\right)\ge0\)

\(x+2\ge0\) ⇔\(x\ge-2\) ⇒ Lấy \(x\ge2\)

Nếu \(x< 2\)

BPT ⇔\(\dfrac{-\left(x^2-2x+5\right)}{x-2}-x+1\ge0\) ⇔\(-x^2+2x-5-\left(x-1\right)\left(x-2\right)\ge0\)

\(-x^2+2x-5-x^2+3x-2\ge0\)

\(-2x^2+5x-7\ge0\)

\(x^2-\dfrac{5}{2}x+\dfrac{7}{2}\le0\)

\(\left(x-\dfrac{5}{4}\right)^2\le\dfrac{11}{4}\)

\(\left[{}\begin{matrix}x-\dfrac{5}{4}\le\dfrac{11}{4}\\x-\dfrac{5}{4}\le\dfrac{-11}{4}\end{matrix}\right.\) ⇔\(\left[{}\begin{matrix}x\le4\\x\le\dfrac{-3}{2}\end{matrix}\right.\) ⇔ \(x\le\dfrac{-3}{2}\) 

S= [2;+∞)U(-∞;\(\dfrac{-3}{2}\)]

Bình luận (0)
TQ
28 tháng 1 2022 lúc 12:20

2) \(ĐK:x\ne-1\) 

Nếu \(x>-1\) 

BPT ⇔ \(2x-3-2\left(x+1\right)< 0\) ⇔\(2x-3-2x-2< 0\)

 ⇔\(-5< 0\) ( luôn đúng với mọi \(x>-1\))

Nếu \(x< -1\)

BPT⇔\(\dfrac{-\left(2x-3\right)}{x+1}-2< 0\) ⇔\(-\left(2x-3\right)-2\left(x+1\right)< 0\) ⇔\(-4x+1< 0\) ⇔ \(x>\dfrac{-1}{4}\)

Vậy S=....

Bình luận (0)
HH
Xem chi tiết
TT
2 tháng 3 2022 lúc 8:49

undefined

Bình luận (0)
H24
Xem chi tiết
HP
16 tháng 3 2021 lúc 18:55

1.

ĐK: \(x\ne7;x\ne-1;x\ne3\)

\(\dfrac{2x-5}{x^2-6x-7}\le\dfrac{1}{x-3}\left(1\right)\)

TH1: \(x< -1\)

\(\left(1\right)\Leftrightarrow\left(2x-5\right)\left(x-3\right)\ge x^2-6x-7\)

\(\Leftrightarrow2x^2-11x+15\ge x^2-6x-7\)

\(\Leftrightarrow x^2-5x+22\ge0\)

\(\Leftrightarrow\) Bất phương trình đúng với mọi \(x< -1\)

TH2: \(-1< x< 3\)

\(\left(1\right)\Leftrightarrow\left(3-x\right)\left(2x-5\right)\ge\left(7-x\right)\left(x+1\right)\)

\(\Leftrightarrow-2x^2+11x-15\ge-x^2+6x+7\)

\(\Leftrightarrow-x^2+5x-22\ge0\)

\(\Rightarrow\) vô nghiệm

TH3: \(3< x< 7\)

Khi đó \(\dfrac{2x-5}{x^2-6x-7}\le0\)\(\dfrac{1}{x-3}>0\)

\(\Rightarrow\) Bất phương trình đúng với mọi \(3< x< 7\)

TH4: \(x>7\)

\(\left(1\right)\Leftrightarrow\left(2x-5\right)\left(x-3\right)\le x^2-6x-7\)

\(\Leftrightarrow2x^2-11x+15\le x^2-6x-7\)

\(\Leftrightarrow x^2-5x+22\le0\)

\(\Rightarrow\) vô nghiệm

Vậy ...

Các bài kia tương tự, chứ giải ra mệt lắm.

Bình luận (0)
PP
Xem chi tiết
NT
30 tháng 7 2023 lúc 23:44

\(\Leftrightarrow\dfrac{-x^2-2x+1}{\left(x+2\right)\left(x-1\right)}>=0\)

=>\(\dfrac{x^2+2x-1}{\left(x+2\right)\left(x-1\right)}< =0\)

TH1: x^2+2x-1>=0 và (x+2)(x-1)<0

=>-2<x<1 và \(\left[{}\begin{matrix}x< =-1-\sqrt{2}\\x>=-1+\sqrt{2}\end{matrix}\right.\)

=>\(-1+\sqrt{2}< =x< 1\)

TH2: x^2+2x-1<=0 và (x+2)(x-1)>0

=>(x>1 hoặc x<-2) và \(-1-\sqrt{2}< =x< =-1+\sqrt{2}\)

=>\(-1-\sqrt{2}< =x< -2\)

Bình luận (0)