Cho pt x2+(2m-1)x-m=0.Tìm m để pt có nghiệm:
a,Tìm giá trị nhỏ nhất của A=x12+x22-5x1x2.
Help!!!
cho pt: x2+2(m+1)x+m2=0
a)tìm m để phương trình có nghiệm
b)tìm m để: x12+x22-5x1x2=13
b) Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=-2m-2\\x_1\cdot x_2=m^2\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2-5x_1x_2=13\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-7x_1x_2=13\)
\(\Leftrightarrow\left(-2m-2\right)^2-7\cdot m^2-13=0\)
\(\Leftrightarrow4m^2+8m+4-7m^2-13=0\)
\(\Leftrightarrow-3m^2+8m-9=0\)(1)
\(\text{Δ}=8^2-4\cdot\left(-3\right)\cdot\left(-9\right)=64-108=-44< 0\)
Vì Δ<0 nên phương trình (1) vô nghiệm
Vậy: Không có giá trị nào của m để phương trình có hai nghiệm x1,x2 thỏa mãn \(x_1^2+x_2^2-5x_1x_2=13\)
a) Để phương trình có nghiệm thì Δ\(\ge\)0
\(\Leftrightarrow\left(2m+2\right)^2-4\cdot1\cdot m^2\ge0\)
\(\Leftrightarrow4m^2+8m+4-4m^2\ge0\)
\(\Leftrightarrow8m\ge-4\)
hay \(m\ge-\dfrac{1}{2}\)
cho PT: x2-2mx 2m-2=0(1) m là tham số
a) GPT(1) khi m=1
b)CM: PT(1) luôn có 2 nghiệm x1, x2 với các giá trị nào của tham số m thì x12 x22=12c) với x1, x2 là 2 nghiệm của pt (1) , tìm giá trị lớn nhất của biểu thức A= 6(x1 x2)/x12 x12 4(x1 x2)
Cho pt: 4x2 + (m2+2m-15)x + (m+1)2-20=0
Tìm tất cả các giá trị của m để pt có 2 ngiệm x1, x2 thoả mãn: x12+x22+2019=0
Không tồn tại giá trị nào của $m$ thỏa mãn, vì $x_1^2+x_2^2+2019\geq 2019>0$ với mọi $m\in\mathbb{R}$
Cho pt: x2 - (m + 2) + 7m - 2m2 - 3 = 0 (với x là ẩn số) (1)
a) Chứng tỏ phương trình (1) luôn có 2 nghiệm phân biệt.
b) Tìm m để phương trình (1) có hai nghiệm x1 , x2 thỏa hệ thức:
2(x12 - x22) - 5x1x2 = 2
phương trình bạn copy thiếu ak bạn ơi?
c3
cho PT ẩn x: x2-2(m-1)x-m-3=0 (1)
a/ giải phương trifnhd đã cho khi m =-3
b/ tìm giá trị của m để pt (1) có 2 nghiệm x1,x2 sao cho x12 + x22 =10
c/ tìm hệ thức liên hệ giữa các nghiệ ko phụ thuộc vfo giá trị của m
a: Khi m=-3 thì (1) trở thành \(x^2-2\cdot\left(-2\right)x-\left(-3\right)-3=0\)
=>x2+4x=0
=>x(x+4)=0
=>x=0 hoặc x=-4
b: \(\text{Δ}=\left(2m-2\right)^2-4\left(-m-3\right)\)
\(=4m^2-8m+4+4m+12\)
\(=4m^2-4m+16\)
\(=\left(2m-1\right)^2+15>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
Ta có: \(x_1^2+x_2^2=10\)
nên \(\left(x_1+x_2\right)^2-2x_1x_2=10\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(-m-3\right)=0\)
\(\Leftrightarrow4m^2-8m+4+2m+6=0\)
\(\Leftrightarrow4m^2-6m+10=0\)
\(\text{Δ}_1=\left(-6\right)^2-4\cdot4\cdot10=36-160< 0\)
Do đó: Phương trình vô nghiệm
Cho PT x2 - 2mx + 2m - 1 = 0
Đặt A = 2(x12 + x22) - 5x1x2
a) Chứng minh rằng A = 8m2 - 18m + 9
b) Tìm m để đạt GTNN
Bài 1: Cho pt ẩn x: x2 - 2(m+1) x + m2 - m = 0 (1)
a) Giải pt (1) khi m = -1, m = 0
b) Tìm m để pt (1) có 1 nghiệm là 1. Tìm nghiệm còn lại.
c) Trong trường hợp pt (1) có 2 nghiệm hãy tính: x12 + x22; (x1-x2)2.
Bài 2: Cho pt: x2 - 4x + 3 = 0
Tính giá trị biểu thức:
a) x12 + x22
b) \(\dfrac{1}{x1+2}+\dfrac{1}{x2+2}\)
c) x13 + x23.
d) x1 - x2.
Bài 2:
a: \(x^2-4x+3=0\)
=>x=1 hoặc x=3
\(x_1^2+x_2^2=1^2+3^2=10\)
b: \(\dfrac{1}{x_1+2}+\dfrac{1}{x_2+2}=\dfrac{1}{1}+\dfrac{1}{5}=\dfrac{6}{5}\)
c: \(x_1^3+x_2^3=1^3+3^3=28\)
d: \(x_1-x_2=1-3=-2\)
Cho pt:x2-4x+m-2=0 (1)
a) Với giá trị nào của m thì pt (1) có nghiệm kép. Tìm No kép đó.
b) Tìm m để pt (1) có 2 No x1, x2 thỏa mãn hệ thức x12+x22=9
a=1,b=-4,c=m-1
Ta có : △ = b\(^2\)-4ac =16-4(m-2)=16-4m+8
Để PT(1) có nghiệm kép thì △=0 <=> 16-4m+8=0<=> 4m=24<=>m=6
Với m=6 PT(1) <=> x\(^2\)-4x+6-2=0<=>x\(^2\)-4x+4=0
Lại Có m=6 thì pt có nghiệm kép => x\(_1\)=x\(_2\)=-\(\dfrac{b}{2a}\)=2
Vậy Với m=6 thì pt 1 có nghiệm kép x=1
b) Theo hệ thức Vi-et
Ta có: x\(_1\)+x\(_2\)=\(\dfrac{-b}{a}\)=4 và x\(_1\).x\(_2\)=\(\dfrac{c}{a}\)=m-2
x1\(^2\)+x2\(^2\)=9
<=> (x\(_1\)+x\(_2\))\(^2\)-2x\(_1\).x\(_2\)=9
<=>16-2m+4=9
<=>2m=1
<=> m=\(\dfrac{1}{2}\)
Vậy m =\(\dfrac{1}{2}\) thì pt(1) có 2 nghiệm thõa mãn x\(_1\)\(^2\)+ x\(_2\)\(^2\)=9
tìm các giá trị của m để pt x2-2mx+1=0 có nghiệm x1,x2 thỏa mãn x12 + x22 =8
PT có 2 nghiệm phân biệt`<=> \Delta' >0`
`<=> m^2-1>0`
`<=> m<-1 ; 1 <m`
Viet: `x_1+x_2=2m`
`x_1x_2=1`
Theo đề: `x_1^2+x_2^2=8`
`<=> (x_1+x_2)^2-2x_1x_2=8`
`<=> 4m^2-2=8`
`<=> 4m^2 - 10=0`
`<=>` \(\left[{}\begin{matrix}m=\dfrac{\sqrt{10}}{2}\\m=-\dfrac{\sqrt{10}}{2}\end{matrix}\right.\)
Vậy `m=\pm \sqrt10/2`.
`x_1^2+x_2^2 = (x_1^2+2x_1x_2+x_2^2)-2x_1x_2 = (x_1+x_2)^2-2x_1x_2`