Những câu hỏi liên quan
VH
Xem chi tiết
HH
24 tháng 7 2017 lúc 9:20

Áp dụng tính chất của dãy tỉ số bằng nhau ta có 

\(\frac{xy+1}{9}=\frac{xy+1+yz+2+xz+3}{9+15+27}=\frac{\left(xy+yz+xz\right)+6}{51}=\frac{11+6}{51}=\frac{1}{3}\)

\(\Leftrightarrow\frac{xy+1}{9}=\frac{1}{3}\Leftrightarrow3xy+3=9\Leftrightarrow xy=2\left(1\right)\)

\(\Leftrightarrow\frac{yz+2}{15}=\frac{1}{3}\Leftrightarrow3yz+6=15\Leftrightarrow yz=3\left(2\right)\)

\(\Leftrightarrow\frac{xz+3}{27}=\frac{1}{3}\Leftrightarrow3xz+9=27\Leftrightarrow xz=6\left(3\right)\)

Kết hợp (1);(2);(3) ta có \(y=\frac{2}{x}\Rightarrow\frac{2}{x}.z=3\Rightarrow2z=3x\Rightarrow x.\frac{3x}{2}=6\Leftrightarrow3x^2=12\Leftrightarrow x^2=4\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

Với \(x=2\Rightarrow y=1;z=3\)

Với \(x=-2\Rightarrow y=-1;z=-3\)

Vậy ....

Bình luận (0)
NP
26 tháng 7 2018 lúc 17:09

giỏi quá 

Bình luận (0)
DH
Xem chi tiết
VT
19 tháng 10 2019 lúc 21:05

Tham khảo:

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
NT
9 tháng 10 2021 lúc 21:38

13: 

xy(x+y)+yz(y+z)+xz(x+z)+2xyz 

= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

Bình luận (0)
H24
Xem chi tiết
H24
4 tháng 11 2018 lúc 18:52

từ giả thiết : xy + yz = 8 ; yz + zx = 9 ; zx + xy = 5

=> xy + yz + zx = 11

=> xy = 2 ; yz = 6 ; zx = 3

=>( xyz)2 = 36     =>  xyz =  \(\pm\)6

+ nếu xyz = 6 thì :        x = 1 ; y = 2; z = 3

+ nếu xyz = -6 thì :       x = -1 ; y = -2 ; z = -3

Bình luận (0)
TP
4 tháng 11 2018 lúc 18:58

\(xy+yz=8;yz+zx=9;zx+xy=5\)

\(\Rightarrow xy+yz+yz+zx+zx+xy=8+9+5\)

\(\Leftrightarrow2xy+2yz+2xz=22\)

\(\Leftrightarrow2\left(xy+yz+xz\right)=22\)

\(\Leftrightarrow xy+yz+xz=11\)

\(\Rightarrow\hept{\begin{cases}xz=11-8\\xy=11-9\\yz=11-5\end{cases}\Rightarrow\hept{\begin{cases}xz=3\\xy=2\\yz=6\end{cases}}}\Rightarrow xz\cdot xy\cdot yz=3\cdot2\cdot6=36\)

\(\Leftrightarrow\left(xyz\right)^2=36=\left(\pm6\right)^2\)

TH1: \(xyz=6\)

\(\Rightarrow\hept{\begin{cases}xyz:xz=y\\xyz:xy=z\\xyz:yz=x\end{cases}\Rightarrow\hept{\begin{cases}y=6:3\\z=6:2\\x=6:6\end{cases}\Rightarrow}\hept{\begin{cases}y=2\\z=3\\x=1\end{cases}}}\)

TH2: \(xyz=-6\)

\(\Rightarrow\hept{\begin{cases}xyz:xz=y\\xyz:xy=z\\xyz:yz=x\end{cases}\Rightarrow\hept{\begin{cases}y=-6:3\\z=-6:2\\x=-6:6\end{cases}\Rightarrow}\hept{\begin{cases}y=-2\\z=-3\\x=-1\end{cases}}}\)

Vậy 2 tập nghiệm của x, y, z là (1;2;3) và (-1;-2;-3)

Bình luận (0)
NL
Xem chi tiết
MS
27 tháng 10 2017 lúc 11:52

Nhường t nhé.Rảnh t làm

Bình luận (1)
NT
30 tháng 10 2017 lúc 9:32

= \(\dfrac{\sqrt{xy}-1+\sqrt{yz}-3+\sqrt{zx}-5}{3+9+6}\) = \(\dfrac{11-\left(1+3+5\right)}{18}\)=\(\dfrac{1}{9}\) haha

Bình luận (0)
H24
30 tháng 10 2017 lúc 20:58

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{\sqrt{xy}-1}{3}=\dfrac{\sqrt{yz}-3}{9}=\dfrac{\sqrt{zx}-5}{6}=\dfrac{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}-1-3-5}{3+9+6}=\dfrac{11-9}{18}=\dfrac{1}{9}\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{xy}-1=\dfrac{1}{9}.3=\dfrac{1}{3}\\\sqrt{yz}-3=\dfrac{1}{9}.9=1\\\sqrt{zx}-5=\dfrac{1}{9}.6=\dfrac{2}{3}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\sqrt{xy}=\dfrac{4}{3}\\\sqrt{yz}=4\\\sqrt{zx}=\dfrac{17}{3}\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}xy=\dfrac{16}{9}\\yz=16\\zx=\dfrac{289}{9}\end{matrix}\right.\Rightarrow}\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\dfrac{17}{9}\\y=\dfrac{16}{17}\\z=17\end{matrix}\right.\\\left\{{}\begin{matrix}x=-\dfrac{17}{9}\\y=-\dfrac{16}{17}\\z=-17\end{matrix}\right.\end{matrix}\right.\)

Bình luận (0)
DH
Xem chi tiết
VH
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
H24
20 tháng 12 2020 lúc 7:54

làm nhanh giùm mình nha ! đang cần gấp <:)

Bình luận (0)
 Khách vãng lai đã xóa