= \(\dfrac{\sqrt{xy}-1+\sqrt{yz}-3+\sqrt{zx}-5}{3+9+6}\) = \(\dfrac{11-\left(1+3+5\right)}{18}\)=\(\dfrac{1}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{\sqrt{xy}-1}{3}=\dfrac{\sqrt{yz}-3}{9}=\dfrac{\sqrt{zx}-5}{6}=\dfrac{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}-1-3-5}{3+9+6}=\dfrac{11-9}{18}=\dfrac{1}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{xy}-1=\dfrac{1}{9}.3=\dfrac{1}{3}\\\sqrt{yz}-3=\dfrac{1}{9}.9=1\\\sqrt{zx}-5=\dfrac{1}{9}.6=\dfrac{2}{3}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\sqrt{xy}=\dfrac{4}{3}\\\sqrt{yz}=4\\\sqrt{zx}=\dfrac{17}{3}\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}xy=\dfrac{16}{9}\\yz=16\\zx=\dfrac{289}{9}\end{matrix}\right.\Rightarrow}\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\dfrac{17}{9}\\y=\dfrac{16}{17}\\z=17\end{matrix}\right.\\\left\{{}\begin{matrix}x=-\dfrac{17}{9}\\y=-\dfrac{16}{17}\\z=-17\end{matrix}\right.\end{matrix}\right.\)
= \(\dfrac{\sqrt{xy-1+\sqrt{yz-3+\sqrt{zx-5}}}}{3+9+6}=\dfrac{11-(1+3+5)}{18}=\dfrac{1}{9}\)