cho hệ PT :
{3x+my=5
mx-y=1
Chứng minh hệ luôn có nghiệm duy nhất với mọi m
Cho hệ pt
\(\left\{{}\begin{matrix}x+my=9\\mx-3y=4\end{matrix}\right.\).
a) Chứng tỏ rằng hệ pt luôn luôn có nghiệm duy nhất vs mọi m
b) Với giá trị nào của m để hệ có nghiệm (x;y) thỏa mãn hệ thức
\(x-3y=\dfrac{28}{m^2+3}-3\)
\(\left\{{}\begin{matrix}x+my=9\\mx-3y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9-my\\m\left(9-my\right)-3y=4\end{matrix}\right.\)(*)
(*) <=> \(9m-m^2y-3y=4\)
<=> \(-y\left(m^2+3\right)=4-9m\)
Vì \(m^2+3\ge3\) >0 với mọi m
=> m2 + 3 khác 0
=> luôn có nghiệm y = \(\dfrac{9m-4}{m^2+3}\) với mọi m
b) Khi đó x= \(9-m.\dfrac{9m-4}{m^2+3}=\dfrac{9m^2+27-9m^2+4m}{m^2+3}=\dfrac{4m^2+27}{m^2+3}\)
Để \(x-3y=\dfrac{28}{m^2+3}-3\)
=> \(4m+27-27m+12=28-3m^2+9\)
<=> \(3m^2-3m-20m+20=0\)
<=> \(3m\left(m-1\right)-20\left(m-1\right)=0\)
<=> \(\left(3m-20\right)\left(m-1\right)=0\)
<=> \(\left[{}\begin{matrix}m=\dfrac{20}{3}\\m=1\end{matrix}\right.\)
Cho hệ phương trình :
3x+my=5
mx-y=1
Chứng minh hệ phương trình có nghiệm duy nhất với mọi m.
Rút y từ phương trình số 2 rồi thay vào phương trrình 1 => 3x + m^2x - m = 5 => m^2x+3x=m+5 => x(m^2+3)=m+5
câu hỏi trong sách nào lớp 9 vậy ạ?
Câu 1 : Cho hệ pt :
3x+my = 5
mx - y = 1
chứng minh hệ pt có nghiệm duy nhất với mọi m ?
Câu 2 : Cho hệ pt :
3x - y = 2m - 1
x + 2y = 3m + 2
tìm m để hệ pt có nghiệm (x;y) duy nhất thỏa mãn x2+y2=10
Giúp mình nha@@ Cảm ơn nhiufuuuuuuuuu!!!!!
Câu 1 :
- Để hệ phương trình có nghiệm duy nhất thì : \(\frac{3}{m}\ne-\frac{m}{1}\left(m\ne0\right)\)
=> \(m^2\ne-3\) ( luôn đúng với mọi m )
Câu 2 :
Ta có hệ : \(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}3\left(3m+2-2y\right)-y=2m-1\\x=3m+2-2y\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}9m+6-6y-y=2m-1\\x=3m+2-2y\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=\frac{2m-1-6-9m}{-7}=\frac{-7m-7}{-7}=m+1\\x=3m+2-2y\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=m+1\\x=3m+2-2m-2=m\end{matrix}\right.\)
- Ta có : \(x^2+y^2=10\)
=> \(m^2+2m+1+m^2=10\)
=> \(2m^2+2m-9=0\)
=> \(\left(m\sqrt{2}\right)^2+\frac{2m\sqrt{2}.1}{\sqrt{2}}+\frac{1}{2}-\frac{19}{2}=0\)
=> \(\left(m\sqrt{2}+\frac{1}{\sqrt{2}}\right)^2=\frac{19}{2}\)
=> \(\left[{}\begin{matrix}m\sqrt{2}+\frac{1}{\sqrt{2}}=\sqrt{\frac{19}{2}}\\m\sqrt{2}+\frac{1}{\sqrt{2}}=-\sqrt{\frac{19}{2}}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}m=\frac{\sqrt{\frac{19}{2}}-\frac{1}{\sqrt{2}}}{\sqrt{2}}\\m=\frac{-\sqrt{\frac{19}{2}}-\frac{1}{\sqrt{2}}}{\sqrt{2}}\end{matrix}\right.\)
Vậy m thỏa mãn điều kiện trên với \(\left[{}\begin{matrix}m=\frac{\sqrt{\frac{19}{2}}-\frac{1}{\sqrt{2}}}{\sqrt{2}}\\m=\frac{-\sqrt{\frac{19}{2}}-\frac{1}{\sqrt{2}}}{\sqrt{2}}\end{matrix}\right.\)
Bài 1 Cho hệ phương trình mx−y=1 va x+4.(m+1)y=1. Tìm m nguyên để hệ phương trình có no duy nhất là no nguyên
Bài 2
Bài 2
Cho hệ phương trình x+my=1 và mx−y=−m
a) Chứng minh rằng hệ phương trình đã cho luôn có nghiệm duy nhất với mọi m ( đã xong )
b)Tìm m để hệ phương trình có nghiệm duy nhất (x, y) thỏa mãn x<1 và y<1 (đã xong )
c)tìm hệ thức liên hệ giữa x và y không phụ thuộc vào giá trị của m
Bài 3
Cho hệ phương trình x−my=2−4m và mx+y=3m+1) Giải hệ phương trình khi m = 2 ( xong )
b) Chứng minh hệ luôn có nghiệm với mọi giá trị của m . Giả sử (xo ,yo) là một nghiệm của hệ .Chứng minh đẳng thức x2o+y2o−5(x2o+y2o)+10=0xo2+yo2−5(xo2+yo2)+10=0
Mọi người giúp mk làm câu c bài 2 , 3 với
1. Cho hệ pt: \(\hept{\begin{cases}x-my=1\\mx+y=1\end{cases}}\)
Chứng tỏ rằng hệ phương trình trên luôn có nghiệm duy nhất (x;y) với mọi nghiệm đó theo m.
\(\hept{\begin{cases}x-my=1\\mx+y=1\end{cases}}\)
<=> \(\hept{\begin{cases}mx-m^2y=m\\mx+y=1\end{cases}}\)
<=> \(\hept{\begin{cases}x-my=1\\\left(1+m^2\right)y=1-m\end{cases}}\)
<=> \(\hept{\begin{cases}x=1+my\\y=\frac{1-m}{m^2+1}\end{cases}}\)
<=> \(\hept{\begin{cases}x=1+m.\frac{1-m}{m^2+1}=\frac{1+m}{m^2+1}\\y=\frac{1-m}{m^2+1}\end{cases}}\)
Vậy với mọi m hệ luôn có nghiệm duy nhất.
cho hệ phương trình\(\hept{\begin{cases}3x-my=-9\\mx+2y=16\end{cases}}\)
a) giải hệ phương trình khi m = 5
b) chứng tỏ rằng hệ phương trình luôn luôn có nghiệm duy nhất với mọi m
c) định m để hệ có nghiệm (x ; y) = (1,4 ; 6,6)
d) với trị nguyên nào của m để hệ có nghiệm (x ; y) thỏa mãn x + y = 7
giúp mình với mình cần nộp trong ngày 17/2/2020
Giải mấy bài này mệt ghê ~
a,Thay m = 5 vào PT \(\hept{\begin{cases}3x-my=-9\\mx+2y=16\end{cases}}\)
\(< =>\hept{\begin{cases}3x-5y=-9\\5x+2y=16\end{cases}}\)
\(< =>\hept{\begin{cases}15x-25y=-45\\15x+6y=48\end{cases}}\)
\(< =>\hept{\begin{cases}31y=93\\3x-5y=-9\end{cases}}\)
\(< =>\hept{\begin{cases}y=3\\3x=6\end{cases}}\)
\(< =>\hept{\begin{cases}y=3\\x=2\end{cases}}\)
b,Ta thay : \(\hept{\begin{cases}y=3\\x=2\end{cases}}\)vào PT ta đc :
\(\hept{\begin{cases}6-3m=-9\\2m+6=16\end{cases}}\)
\(< =>\hept{\begin{cases}m=5\\m=5\end{cases}}\)(đề sai ? hay do mk ngu ?)
c,bạn thay nghiệm vào là đc nhé <3
cho hệ pt:\(\left\{{}\begin{matrix}3x-my=-9\\mx+2y=16\end{matrix}\right.\)
a, giải hệ khi m=5
b,chứng tỏ hệ pt luôn có nghiệm duy nhất với mọi m
c,định m để hệ có nghiệm (x;y)=(1,4;6,6)
a. \(\left\{{}\begin{matrix}3x-5y=-9\\5x+2y=16\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
b.Để hpt có 1 nghiệm,
Có: \(\dfrac{3}{m}\ne\dfrac{-m}{2}\)
\(\Leftrightarrow-m^2\ne6\left(LĐ\right)\)
c.\(\left\{{}\begin{matrix}4,2-6,6m=-9\\1,4m+13,2=16\end{matrix}\right.\Leftrightarrow m=\dfrac{45}{22}\)
mx - y = 2
3x + my = 5
Tìm m để hệ có nghiệm duy nhất với mọi m
x + y = 1 - \(\dfrac{m2}{m2+3}\)
câu 1: cho hệ pt : { (m-2 )x-3y=-5 và x+my=3 .Chứng minh hệ pt có nghiệm duy nhất ,tìm nghiệm đó theo m.
câu 2 :cho p: y= x^2 và d :y=2(m+1)x-3m+2.chứng minh p và d luôn cắt nhau tại 2 điểm phân biệt A,B với mọi m.