Những câu hỏi liên quan
H24
Xem chi tiết
NM
1 tháng 5 2018 lúc 17:18

Hỏi đáp Toán

Bình luận (0)
DL
Xem chi tiết
DL
1 tháng 3 2017 lúc 18:48

giúp mình với hihi

Bình luận (0)
LD
Xem chi tiết
LD
26 tháng 4 2018 lúc 15:47

please help me

Bình luận (0)
LT
Xem chi tiết
PD
26 tháng 2 2018 lúc 19:51

Ta có \(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{2n\left(2n+2\right)}=\dfrac{1009}{4038}\)

\(\Leftrightarrow\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+...+\dfrac{2}{2n\left(2n+2\right)}=\dfrac{1009}{2019}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2n}-\dfrac{1}{2n+2}=\dfrac{1009}{2019}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2n+2}=\dfrac{1009}{2019}\)

\(\Leftrightarrow\dfrac{n}{2n+2}=\dfrac{1009}{2019}\)

\(\Leftrightarrow2019n=1009\left(2n+2\right)\)

\(\Leftrightarrow2019n=2018n+2018\)

\(\Leftrightarrow n=2018\)

Bình luận (0)
HT
Xem chi tiết
VP
20 tháng 7 2017 lúc 18:01

\(\dfrac{x+1}{2014}+\dfrac{x+2}{2013}+.....+\dfrac{x+1007}{1008}=\dfrac{x+1008}{1007}+\dfrac{x+1009}{1006}+........+\dfrac{x+2014}{1}\)\(\Leftrightarrow\left(\dfrac{x+1}{2014}+1\right)+\left(\dfrac{x+2}{2013}+1\right)+...+\left(\dfrac{x+1007}{1008}+1\right)=\left(\dfrac{x+1008}{1007}+1\right)+\left(\dfrac{x+1009}{1006}+1\right)+...+\left(\dfrac{x+2014}{1}+1\right)\)\(\Leftrightarrow\dfrac{x+2015}{2014}+\dfrac{x+2015}{2013}+...+\dfrac{x+1007}{1008}=\dfrac{x+2015}{1007}+\dfrac{x+1009}{1006}+...+\dfrac{x+2014}{1}\)\(\Leftrightarrow\dfrac{x+2015}{2014}+\dfrac{x+2015}{2013}+...+\dfrac{x+2015}{1008}-\dfrac{x+1008}{1007}-\dfrac{x+2015}{1006}-...-\dfrac{x+2015}{1}=0\)\(\Leftrightarrow\left(x+2015\right)\left(\dfrac{1}{2014}+\dfrac{1}{2013}+...+\dfrac{1}{1008}-\dfrac{1}{1007}-\dfrac{1}{1006}-...-1\right)=0\)\(\Leftrightarrow x+2015=0\left(\dfrac{1}{2014}+\dfrac{1}{2013}+...+\dfrac{1}{1008}-\dfrac{1}{1007}-\dfrac{1}{1006}-...-1>0\right)\)\(\Leftrightarrow x=-2015\)

Vậy x=-2015

Bình luận (0)
MT
Xem chi tiết
GU
Xem chi tiết
TC
31 tháng 7 2021 lúc 10:51

1. ( 3x + 2)- 4

= (3x+2-2)(3x+2+2)

= 3x(3x+4)

2. 4x2 - 25y2

= (2x-5y)(2x+5y)

3. 4x2- 49

=(2x-7)(2x+7)

4. 8z3 + 27

=(2z+3)(4x2-6z+9)

5. \(\dfrac{9}{25}x^4-\dfrac{1}{4}\)

\((\dfrac{3}{5}x^2-\dfrac{1}{2})(\dfrac{3}{5}x^2+\dfrac{1}{2})\)

6. x32  - 1

=(x16-1)(x16+1)

7. 4x2 + 4x + 1

=(2x+1)2

8. x2 - 20x + 100

=(x-10)2

9. y4 -14y2 + 49

=(y2-7)2

10.  125x3 - 64y3

= (5x-4y)(25x2+20xy+16y2)

Bình luận (0)
NT
31 tháng 7 2021 lúc 13:40

1) \(\left(3x+2\right)^2-4=\left(3x+2+2\right)\left(3x+2-2\right)=3x\left(3x+4\right)\)

2) \(4x^2-25y^2=\left(2x-5y\right)\left(2x+5y\right)\)

3) \(4x^2-49=\left(2x-7\right)\left(2x+7\right)\)

4) \(8z^3+27=\left(2z+3\right)\left(4z^2-6z+9\right)\)

5) \(\dfrac{9}{25}x^4-\dfrac{1}{4}=\left(\dfrac{3}{5}x^2-\dfrac{1}{2}\right)\left(\dfrac{3}{5}x^2+\dfrac{1}{2}\right)\)

6) \(x^{32}-1=\left(x^{16}-1\right)\left(x^{16}+1\right)\)

\(=\left(x^8-1\right)\left(x^8+1\right)\left(x^{16}+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\)

7) \(4x^2+4x+1=\left(2x+1\right)^2\)

8) \(x^2-20x+100=\left(x-10\right)^2\)

9) \(y^4-14y^2+49=\left(y^2-7\right)^2\)

Bình luận (0)
H24
8 tháng 8 2024 lúc 10:46

lam kieu gi

Bình luận (0)
LL
Xem chi tiết
HQ
3 tháng 4 2017 lúc 10:49

Ta có:

\(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2013}-\dfrac{1}{2014}\)

\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2014}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-2\left(1+\dfrac{1}{2}+...+\dfrac{1}{2014}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{2017}\right)\)

\(=\dfrac{1}{1008}+\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}\)

\(P=\dfrac{1}{1008}+\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}\)

\(\Rightarrow S=P\Rightarrow S-P=0\)

\(\Rightarrow\left(S-P\right)^{2016}=0^{2016}=0\)

Vậy \(\left(S-P\right)^{2016}=0\)

Bình luận (0)
TD
Xem chi tiết
DH
27 tháng 8 2017 lúc 19:03

B=\(\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\)

=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1006}+\dfrac{1}{1007}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)\)- \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1006}\right)\)

=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1006}+\dfrac{1}{1007}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)\)-2\(\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\)

=1-\(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...-\dfrac{1}{2012}+\dfrac{1}{2013}\)=S

( A-B)2013 =0

Chúc ban học tốt nhé...!

Bình luận (0)