Đại số lớp 7

LL

Cho :S=\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+.......+\dfrac{1}{2013}-\dfrac{1}{2014}+\dfrac{1}{2015}\) và P=\(\dfrac{1}{1008}+\dfrac{1}{1009}+......+\dfrac{1}{2014}+\dfrac{1}{2015}\) Tính \(\left(S-P\right)^{2016}\)

HQ
3 tháng 4 2017 lúc 10:49

Ta có:

\(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2013}-\dfrac{1}{2014}\)

\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2014}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-2\left(1+\dfrac{1}{2}+...+\dfrac{1}{2014}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{2017}\right)\)

\(=\dfrac{1}{1008}+\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}\)

\(P=\dfrac{1}{1008}+\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}\)

\(\Rightarrow S=P\Rightarrow S-P=0\)

\(\Rightarrow\left(S-P\right)^{2016}=0^{2016}=0\)

Vậy \(\left(S-P\right)^{2016}=0\)

Bình luận (0)

Các câu hỏi tương tự
NG
Xem chi tiết
HS
Xem chi tiết
TD
Xem chi tiết
DN
Xem chi tiết
MH
Xem chi tiết
TN
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
GY
Xem chi tiết