Những câu hỏi liên quan
DL
Xem chi tiết
H24

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Bình luận (0)
H24

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP

Bình luận (0)
NT
9 tháng 5 2023 lúc 15:33

2: A=n^2+3n+2=(n+1)(n+2)

Để A là số nguyên tố thì n+1=1 hoặc n+2=2

=>n=0

Bình luận (0)
H24
Xem chi tiết
TB
Xem chi tiết
TH
9 tháng 3 2022 lúc 21:52

-Vì \(n+1,n+13\) là các số chính phương nên đặt \(n+1=a^2,n+13=b^2\)

\(\Rightarrow b^2-a^2=n+13-\left(n+1\right)=12\)

\(\Rightarrow\left(b-a\right)\left(b+a\right)=12=\left[{}\begin{matrix}1.12\\2.6\\3.4\end{matrix}\right.\)

-Vì \(b-a< b+a\)

\(\Rightarrow\left[{}\begin{matrix}b-a=1;b+a=12\\b-a=2;b+a=6\\b-a=3;b+a=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}b=\dfrac{13}{2};a=\dfrac{11}{2}\left(loại\right)\\b=4;a=2\left(nhận\right)\\b=\dfrac{7}{2};a=\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)

-Vậy \(n=3\) thì n+1 và n+12 đều là các số chính phương.

 

Bình luận (0)
TH
Xem chi tiết
VT
26 tháng 5 2016 lúc 20:48

Ta có: A = 2+ 211 + 2n = 28.(1 + 23 + 2n-8) = (23)2.(1 + 2.22.1 + 24 +2n-8 - 24) =  (23)2.((1 + 22)+ 2n-8 - 24)

=> A là số chính phương <=> 2n-8=24=> n-8=4=> n=12

Bình luận (0)
LD
26 tháng 5 2016 lúc 20:51

Ta có: A = 2+ 211 + 2n = 28.(1 + 23 + 2n-8) = (23)2.(1 + 2.22.1 + 24 +2n-8 - 24) =  (23)2.((1 + 22)+ 2n-8 - 24)

=> A là số chính phương <=> 2n-8=24=> n-8=4=> n=12

Bình luận (0)
TH
26 tháng 5 2016 lúc 20:53

Giả sử 28 + 211 + 2n = a2 (a  N) thì

2n = a2 – 482 = (a + 48) (a – 48)

2p. 2q = (a + 48) (a – 48) với p, q  N ; p + q = n và p > q

      a + 48 = 2p  2p - 2q = 96 2q (2p-q – 1) = 25.3

a – 48 = 2q

 q = 5 và p – q =  2  p = 7

 n = 5 + 7 = 12

Thử lại ta có: 28 + 211 + 2n = 802

Bình luận (0)
VA
Xem chi tiết
H24
Xem chi tiết
H24
19 tháng 2 2018 lúc 21:55

ai trả lời đc mk cho 3

có hội nha

bài tập tết của mk đó

nl mk sắp phải nộp rồi

Bình luận (0)
NC
20 tháng 2 2018 lúc 10:54

bài nào ấy nhỉ

Bình luận (0)
H24
20 tháng 2 2018 lúc 13:43

c hó công

ko bt thì thui

tao tưởng mày biết

Bình luận (0)
BC
Xem chi tiết
LK
24 tháng 3 2019 lúc 21:56

Vì \(3^n+1\)là số chính phương nên:

\(3^n+1=k^2\)

\(\Leftrightarrow3^n=\left(k+1\right)\left(k-1\right)\)

Đặt: \(\hept{\begin{cases}3^p=k+1\\3^q=k-1\end{cases}}\left(p>q\right)\)

Suy ra: \(p+q=n\)

Và \(3^p-3^q=2\)

\(\Leftrightarrow3^q\left(3^{p-q}-1\right)=1\cdot\left(3-1\right)\)

\(\hept{\begin{cases}q=0\\p=1\end{cases}\Rightarrow}n=p+q=1\)

Vậy với n=1 thì \(3^n+1\)là scp

Bình luận (0)
MK
Xem chi tiết
TL
17 tháng 11 2015 lúc 12:15

Tham khảo câu hỏi tương tự nhé bạn .

Tick tớ đc chứ 

Bình luận (0)
NV
Xem chi tiết