tìm số dương x sao cho 2x= 52-4x ☹
cứu mình đi ☹😕 cho đa thức A( x) = 2x^5 +2-6x^2-3x^3+4x^5 a, thu gọn đa thức A( x) b,sắp xếp A( x) theo lũy thừa giảm của biến c, tìm bậc của A( x) d, tính A(1) ; A(-2) cứu help😭☹
a/+b/\(A\left(x\right)=2x^5+2-6x^2-3x^3+4x^5\)
\(=\left(2x^5+4x^5\right)-3x^3-6x^2+2\)
\(=6x^5-3x^3-6x^2+2\)
c/Bậc của \(A\left(x\right)\) là 5
d/\(A\left(1\right)=6\cdot1^5-3\cdot1^3-6\cdot1^2+2\)
\(=6-3-6+2\)
\(=-1\)
\(A\left(-2\right)=6\cdot\left(-2\right)^5-3\cdot\left(-2\right)^3-6\cdot\left(-2\right)^2+2\)
\(=6\cdot\left(-32\right)-3\cdot\left(-8\right)-6\cdot4+2\)
\(=-192-\left(-24\right)-24+2\)
\(=-190\)
cứu mình đi ☹😕 cho đa thức A( x) = 2x^5 +2-6x^2-3x^3+4x^5 a, thu gọn đa thức A( x) b,sắp xếp A( x) theo lũy thừa giảm của biến c, tìm bậc của A( x) d, tính A(1) ; A(2) cứu help😭☹
a) và b)
A(x) = 2x⁵ + 2 - 6x² - 3x³ + 4x⁵
= (2x⁵ + 4x⁵) - 3x³ - 6x² + 2
= 6x⁵ - 3x³ - 6x² + 2
c) Bậc của A(x) là 5
d) A(1) = 6.1⁵ - 3.1³ - 6.1² + 2
= 6.1 - 3.1 - 6.1 + 2
= 6 - 3 - 6 + 2
= -1
A(2) = 6.2⁵ - 3.2³ - 6.2² + 2
= 6.32 - 3.8 - 6.4 + 2
= 192 - 24 - 24 + 2
= 146
Tìm x,y nguyên dương sao cho \(4x^2+y^2-2x-y-2xy+1=1\)
\(4x^2+y^2-2x-y-2xy+1=1\)
\(\Leftrightarrow4x^2-4xy+y^2-2x-y+2xy=0\)
\(\Leftrightarrow\left(2x-y\right)^2-2x-y+2xy=0\)
\(\Leftrightarrow x\left[\left(2x-y\right)-2x-y+2xy\right]=0\)
\(\Leftrightarrow x\left(2x-y\right)^2-2x^2+xy=0\)
\(\Leftrightarrow x\left[\left(2x-y\right)^2-2x+y\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\\left(2x-y\right)^2-2x+y=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\\left(2.0-y\right)^2-2.0+y=0\end{cases}}}\) (thay x=0 vào biểu thức dưới)
\(\Leftrightarrow x=0\) hoặc \(y^2+y=0\Leftrightarrow\orbr{\begin{cases}y=0\\y=-1\end{cases}}\) (mà x;y nguyên dương )=>y=0
Vậy x=0 ;y=0
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\y^2+y=0\Leftrightarrow\orbr{\begin{cases}y=0\left(tm\right)\\y=-1\left(ktm\right)\end{cases}}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\y^2+y=0\Leftrightarrow\orbr{\begin{cases}y=0\left(tm\right)\\y=-1\left(ktm\right)\end{cases}}\end{cases}}\)
Bạn sai rồi nhé. Khi ta giải đc x=0 ở Th1 thì không được áp dụng x=0 ở th2
giải giúp bài toán với, cảm ơn:
Tìm x sao cho:
giá trị của biểu thức 5 - 2x là số dương;
giá trị của biểu thức x + 3 nhỏ hơn giá trị của biểu thức 4x - 5.
Tìm x biết:
1. 52x - 3 - 2 . 52 = 52 . 3
2. 41 - 2x+1 = 9
3. 65 - 4x+2 = 20140
1: =>\(5^{2x-3}=5^2\cdot3+5^2\cdot2=5^2\cdot5=5^3\)
=>2x-3=3
=>2x=6
=>x=3
2: \(41-2^{x+1}=9\)
=>\(2^{x+1}=32\)
=>x+1=5
=>x=4
3: =>\(4^{x+2}=65-1=64\)
=>x+2=3
=>x=1
\(5^{2x-3}-2.5^2=5^2.3\\ 5^{2x-3}=5^2.3+5^2.2\\ 5^{2x-3}=5^2.\left(3+2\right)\\ 5^{2x-3}=5^2.5\\ 5^{2x-3}=5^3\\ \Rightarrow2x-3=3\\ 2x=3+3\\ 2x=6\\ x=\dfrac{6}{2}\\ Vậy:x=3\)
\(41-2^{x+1}=9\\ 2^{x+1}=41-9\\ 2^{x+1}=32=2^5\\ \Rightarrow x+1=5\\ \Leftrightarrow x=5-1=4\\ ---\\ 65-4^{x+2}=2014^0\\ 65-4^{x+2}=1\\ 4^{x+2}=65-1\\ 4^{x+2}=64=4^3\\ \Rightarrow x+2=3\\ Vậy:x=1\)
tìm các số nguyên dương x;y sao cho 4x'2+6x+3 chia hết cho 2xy-1
tìm số tự nhiên x sao cho
a) 2x + 108 : 2x + 3
b) 4x + 102 : 4x + 7
Bài 1 Tìm x
A) (15-2x)(4x+1)-(13-4x)(2x-3)-(x-1)(x+2)+x^2=52
nhanh lên mk dag can gap
A) (15-2x)(4x+1)-(13-4x)(2x-3)-(x-1)(x+2)+x^2=52
..............bn phân rồi gộp lại để ra kq như dòng dưới nha....
=>19x + 56 = 52
=> 19x = -4
=> x = ‐ 4 / 1 9
NHỚ TK MK ĐÓ
Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)