Những câu hỏi liên quan
DL
Xem chi tiết
H24
2 tháng 9 2017 lúc 12:21

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Bình luận (0)
HT
Xem chi tiết
RH
3 tháng 5 2023 lúc 14:39

\(\dfrac{x}{y}+\dfrac{y}{x}-2=\dfrac{\left(x-y\right)^2}{xy}\ge0\)

Bình luận (0)
MK
Xem chi tiết
PL
6 tháng 6 2018 lúc 18:01

a) Mình làm lại , mk thiếu dấu

Ta có : y ≤ 1 ⇒ x ≥ xy ( x > 0) ( 1)

Tương tự : y ≥ yz ( y > 0) ( 2) ; z ≥ xz ( z > 0) ( 3)

Cộng từng vế của ( 1 ; 2 ; 3) , ta có :

x + y + z ≥ xy + yz + zx

⇔ x + y + z - xy - yz - xz ≥ 0 ( *)

Lại có : x ≤ 1 ⇒ x - 1 ≤ 0 ( 4)

Tương tự : y - 1 ≤ 0 ( 5) ; z - 1≤ 0 ( 6)

Nhân vế với vế của ( 4 ; 5 ; 6) , ta có :

( x - 1)( y - 1)( z - 1) ≤ 0

⇔ x + y + z - xy - yz - zx + xyz - 1 ≤ 0

⇔ x + y + z - xy - yz - zx ≤ 1 - xyz ( 7)

Do : 0 ≤ x , y , z ≤ 1 ⇒ 0 ≤ xyz ⇒ - xyz ≤ 0 ⇒ 1 - xyz ≤ 1 ( 8)

Từ ( 7;8 ) ⇒ x + y + z - xy - yz - zx ≤ 1 ( **)

Từ ( * ; **) ⇒ đpcm

Bình luận (8)
H24
Xem chi tiết
NM
23 tháng 10 2021 lúc 7:25

Đặt \(P=\left(\dfrac{x-y}{z}+\dfrac{y-z}{x}+\dfrac{z-x}{y}\right)\left(\dfrac{z}{x-y}+\dfrac{x}{y-z}+\dfrac{y}{z-x}\right)=9\)

Đặt \(\left\{{}\begin{matrix}\dfrac{x-y}{z}=a\\\dfrac{y-z}{x}=b\\\dfrac{x-z}{y}=c\end{matrix}\right.\)

\(\Leftrightarrow P=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\\ =1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+1+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}+1\\ =3+\dfrac{a+c}{b}+\dfrac{a+b}{c}+\dfrac{b+c}{a}\)

Ta có \(\dfrac{a+c}{b}=\dfrac{\dfrac{x-y}{z}+\dfrac{z-x}{y}}{\dfrac{y-z}{x}}=\dfrac{xy-y^2+z^2-xz}{yz}\cdot\dfrac{x}{y-z}\)

\(=\dfrac{\left(z-y\right)\left(y+z-x\right)x}{yz\left(y-z\right)}=\dfrac{x\left(x-y-z\right)}{yz}\)

Mà \(x+y+z=0\Leftrightarrow x=-y-z\)

\(\Leftrightarrow\dfrac{a+c}{b}=\dfrac{x\left(x+x\right)}{yz}=\dfrac{2x^2}{yz}\)

Cmtt ta được \(\dfrac{a+b}{c}=\dfrac{2y^2}{xz};\dfrac{b+c}{a}=\dfrac{2z^2}{xy}\)

Cộng vế theo vế

\(\Leftrightarrow P=\dfrac{2x^2}{yz}+\dfrac{2y^2}{xz}+\dfrac{2z^2}{xy}+3=\dfrac{2x^3+2y^3+2z^3}{xyz}+3\\ \Leftrightarrow P=\dfrac{2\left(x^3+y^3+z^3\right)}{xyz}+3\)

Lại có \(x+y+z=0\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\\ \Leftrightarrow x^3+y^3+z^3=3xyz\)

Thế vào \(P\)

\(\Leftrightarrow P=\dfrac{2\cdot3xyz}{xyz}+3=6+3=9\)

Bình luận (0)
BN
Xem chi tiết
NL
13 tháng 7 2021 lúc 20:01

\(x^2+y^2-z^2>0\Rightarrow x^2+2xy+y^2-z^2>0\)

\(\Rightarrow\left(x+y\right)^2-z^2>0\)

\(\Rightarrow\left(x+y-z\right)\left(x+y+z\right)>0\)

Mà x;y;z>0 \(\Rightarrow x+y+z>0\)

\(\Rightarrow x+y-z>0\)

Bình luận (0)
LV
Xem chi tiết
AH
1 tháng 4 2021 lúc 23:13

Lời giải:
Áp dụng BĐT Cô-si cho 2 số dương:

$x^2+(x+y)^2\geq 2x(x+y)\Rightarrow \frac{x^2}{x^2+(x+y)^2}\leq \frac{x^2}{2x(x+y)}=\frac{x}{2(x+y)}$

$y^2+(x+y)^2\geq 2y(x+y)\Rightarrow \frac{y^2}{y^2+(x+y)^2}\leq \frac{y^2}{2y(x+y)}=\frac{y}{2(x+y)}$

Cộng theo vế:

$\frac{x^2}{x^2+(x+y)^2}+\frac{y^2}{y^2+(x+y)^2}\leq \frac{x+y}{2(x+y)}=\frac{1}{2}$

Dấu "=" xảy ra khi $x^2=(x+y)^2=y^2$ (điều này vô lý với $x,y>0$)

Do đó dấu "=" không xảy ra, hay $\frac{x^2}{x^2+(x+y)^2}+\frac{y^2}{y^2+(x+y)^2}<\frac{1}{2}$ (đpcm)

Bình luận (0)
NH
Xem chi tiết
NH
29 tháng 9 2023 lúc 11:11

Mình đã làm được rồi

Bình luận (0)
TT
Xem chi tiết
OO
21 tháng 8 2015 lúc 15:35

Xét hiệu: (x+y)(y+z)(z+x)-8xyz=0
(=) (x+y)>=2√xy
(y+z)>=2√yz
(z+x)>=2√zx
(=) (x+y)(y+z)(z+x)>=8√x^2 y^2 z^2
(=) (x+y)(y+z)(x+z)>=8|x| |y| |z|
(=) ( x+y)(y+z)(z+x)>= 8xyz

 

Bình luận (0)
DH
Xem chi tiết
NL
17 tháng 9 2021 lúc 16:21

\(\sqrt{xy}\left(x-y\right)=x+y\)

\(\Rightarrow xy\left(x-y\right)^2=\left(x+y\right)^2\)

\(\Rightarrow xy\left[\left(x+y\right)^2-4xy\right]=\left(x+y\right)^2\)

\(\Rightarrow xy\left(x+y\right)^2=4\left(xy\right)^2+\left(x+y\right)^2\ge2\sqrt{4\left(xy\right)^2\left(x+y\right)^2}=4xy\left(x+y\right)\)

\(\Rightarrow x+y\ge4\) (đpcm)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(2+\sqrt{2};2-\sqrt{2}\right)\)

Bình luận (0)