Lời giải:
Áp dụng BĐT Cô-si cho 2 số dương:
$x^2+(x+y)^2\geq 2x(x+y)\Rightarrow \frac{x^2}{x^2+(x+y)^2}\leq \frac{x^2}{2x(x+y)}=\frac{x}{2(x+y)}$
$y^2+(x+y)^2\geq 2y(x+y)\Rightarrow \frac{y^2}{y^2+(x+y)^2}\leq \frac{y^2}{2y(x+y)}=\frac{y}{2(x+y)}$
Cộng theo vế:
$\frac{x^2}{x^2+(x+y)^2}+\frac{y^2}{y^2+(x+y)^2}\leq \frac{x+y}{2(x+y)}=\frac{1}{2}$
Dấu "=" xảy ra khi $x^2=(x+y)^2=y^2$ (điều này vô lý với $x,y>0$)
Do đó dấu "=" không xảy ra, hay $\frac{x^2}{x^2+(x+y)^2}+\frac{y^2}{y^2+(x+y)^2}<\frac{1}{2}$ (đpcm)