cho tam giác ABC vuông tại A, có góc ABC=30 độ, AC=1cm,
tính diện tích tam giác ABC
Cho tam giác ABC vuông tại A, đường cao AH, góc B = 30 độ, AB = 5cm
a, Tính AC, BC, AH
b, Tính diện tích tam giác ABC
Ta có: Tam giác ABC vuông và có góc B bằng 30 độ
=> góc C = 60 độ
=> Tam giác ABC là nửa tam giác đều
=> \(\frac{BC\sqrt{3}}{2}=AB=5\left(cm\right)\)
=> BC= \(\frac{5.2}{\sqrt{3}}=\frac{10}{\sqrt{3}}\)
=> AC = \(\frac{10}{\sqrt{3}}:2=\frac{5\sqrt{3}}{3}\) (cm)
=> AH = \(\frac{AB.AC}{BC}=\frac{5}{2}\left(cm\right)\)
b, Stam giác ABC=\(\frac{AB.AC}{2}=\frac{25\sqrt{3}}{6}\left(cm^2\right)\)
cho tam giác ABC vuông tại A có AB=16cm,AC=12cm. Kẻ AH vuông góc với BC tại H . Gọi S tam ABC là diện tích tam giác ABC 1) tính diện tích tam giác abc 2) tính BC,AH 3)tính BH,CH giúp mình vs ạ
1) Có \(\Delta ABC\) vuông
=> S\(\Delta ABC\) = \(\dfrac{AB.AC}{2}\) = \(\dfrac{16.12}{2}\) = 96 (cm2)
2) Có \(\Delta ABC\) vuông , theo định lý Pytago ta có :
AB2 + AC2 = BC2
=> 162 + 122 = BC2
=> 400 = BC2
=> BC = 20 (cm)
Ta có : S\(\Delta ABC\) = S\(\Delta ABH\) + S\(\Delta ACH\)
=> \(\dfrac{BH.AH}{2}+\dfrac{HC.AH}{2}=S\Delta ABC\)
=> \(\dfrac{BH.AH+HC.AH}{2}=S\Delta ABC\)
=> \(\dfrac{AH.\left(BH+HC\right)}{2}=S\Delta ABC\)
=> \(\dfrac{AH.BC}{2}\) = 96
=> AH = 96 . \(\dfrac{2}{BC}\) = 96 . \(\dfrac{2}{20}\) = 9.6 (cm)
3) Có \(\Delta ABH\) vuông , theo định lý Pytago ta có :
BH2 = AB2 - AH2
=>BH2 = 162 - 9.62 = 163.84
=> BH = 12.8 (cm)
=> CH = BC - BH = 20 - 12.8 = 7.2 (cm)
1. Tam giác ABC vuông góc tại A, đường cao AH. Biết AB:AC=3:4. Và AB+AC=21
a. Tính độ dài các cạnh tam giác ABC
b. Tính độ dài các đoạn AH, BH, CH
2. Cho hình thang ABCD có góc A=góc D= 90 độ; góc B= 60 độ; CD=30 cm; CA vuông góc với CB. Tính diện tích hình thang
1. Tam giác ABC vuông góc tại A, đường cao AH. Biết AB:AC=3:4. Và AB+AC=21
a. Tính độ dài các cạnh tam giác ABC
b. Tính độ dài các đoạn AH, BH, CH
2. Cho hình thang ABCD có góc A=góc D= 90 độ; góc B= 60 độ; CD=30 cm; CA vuông góc với CB. Tính diện tích hình thang
AB=21/(3+4)x3=9 cm
AC=21-9=12cm
Tự kẻ hình bạn nhé =)))
Áp dụng định lí Pitago vào tam giác ABC , có
AB^2+AC^2=BC^2
=>thay số vào, tính được BC=15cm
Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:
AB^2=BHxBC
=>BH=81/15=5.4cm
=>CH=15-5.4=9.6cm
AH^2=BHxCH=5.4x9.6=51.84cm
Cho tam giác ABC vuông tại A có góc B = 30 độ, AB = 6cm
a) Giải tam giác vuông ABC
b) Kẻ đường cao AH và trung tuyến AM của tam giác ABC. Tính diện tích tam giác AHM
a: \(\widehat{C}=60^0\)
\(AC=6\sqrt{3}\left(cm\right)\)
\(BC=12\sqrt{3}\left(cm\right)\)
Cho tam giác ABC vuông tại A, có AB=3cm, AC=5cm, đường phân giác AD. Đường vuông góc với DC cắt AC ở E.
a) Chứng minh rằng tam giác ABC đồng dạng với tam giác DEC.
b)Tính độ dài BC,BD.
c) Tính độ dài AD. Tính diện tích tam giác ABC và diện tích tứ giác ABDE
Cho tam giác ABC vuông tại A, có AB = 3cm, AC = 5cm , đường phân giác AD. Đường vuông góc với DC cắt AC ở E .
a) Chứng minh rằng tam giác ABC ~ tam giác DEC
b) Tính độ dài các đoạn thẳng BC , BD
c) Tính độ dài AD Tính diện tích tam giác ABC và diện tích tứ giác ABD
a xet ABC và DEC
chung C
bAc=eDc=90 độ
=> ABC và DEC đồng dạng (gg) (1)
b BC^2=3^2+5^2=34
=> BC= căn (34)
BD/DC=3/5
BC/DC=8/5
<=> căn 34/DC=8/5
=> DC=căn(34) *5/8
=> BD=căn(34) -DC=3(căn(34))/8
c Sabc=3*5/2=15/2
sabde= 15/2-15/2*17/32=225/64
Bài 6 : Cho tam giác ABC vuông tại A, có AB = 3cm, AC = 5cm , đường phân giác AD. Đường vuông góc với DC cắt AC ở E .
a) Chứng minh rằng tam giác ABC ~ tam giác DEC
b) Tính độ dài các đoạn thẳng BC , BD
c) Tính độ dài AD Tính diện tích tam giác ABC và diện tích tứ giác ABDE
Cho tam giác vuông ABC vuông góc tại A ,có AB = 30 cm , AC = 40 cm,BC =50cm .Từ A hạ đường cao AH vuông góc với BC biết HC = 38 m a tính diện tích tam giác ABC , ABH,ABC b từ H hạ đường cao HD xuống đáy AC,HE xuống đáy AC ,tính diện tích hình chữ nhật ADHE
a: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=30\cdot20=600\left(cm^2\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=24\left(cm\right)\)
\(BH=\sqrt{30^2-24^2}=18\left(cm\right)\)
CH=32(cm)
\(S_{ABH}=\dfrac{24\cdot18}{2}=24\cdot9=216\left(cm^2\right)\)
\(S_{ACH}=\dfrac{24\cdot32}{2}=12\cdot32=384\left(cm^2\right)\)
b: \(AD=\dfrac{AH^2}{AB}=\dfrac{24^2}{30}=19.2\left(cm\right)\)
\(HD=\dfrac{AH\cdot HB}{AB}=\dfrac{24\cdot18}{30}=14.4\left(cm\right)\)
\(S_{AEHD}=HD\cdot AD=19.2\cdot14.4=276.48\left(cm^2\right)\)
Cho tam giác ABC vuông tại A có AC=6cm, góc B =30o
a) Giải tam giác vuông ABC
b) Vẽ đường cao Ah và trung tuyến Am của tam giác ABC. Tính diện tích tam giá AHM