Những câu hỏi liên quan
PM
Xem chi tiết
TH
6 tháng 5 2022 lúc 19:58

-Bài 3:

2) -Áp dụng BĐT Caushy Schwarz ta có:

\(A=\dfrac{1}{x^3+3xy^2}+\dfrac{1}{y^3+3x^2y}\ge\dfrac{\left(1+1\right)^2}{x^3+3xy^2+3x^2y+y^3}=\dfrac{4}{\left(x+y\right)^3}\ge\dfrac{4}{1^3}=4\)-Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

Bình luận (0)
SN
Xem chi tiết
NT
12 tháng 2 2022 lúc 9:38

Câu 6: B

Câu 7: A

Bình luận (0)
PA
SV
26 tháng 12 2021 lúc 18:50

câu hỏi đâu bn ?

Bình luận (0)
AM
5 tháng 5 2022 lúc 16:39

bài đâu bn

Bình luận (0)
TD
Xem chi tiết
H24
19 tháng 5 2021 lúc 21:50

vẽ lại mạch ta có RAM//RMN//RNB

đặt theo thứ tự 3 R là a,b,c

ta có a+b+c=1 (1)

điện trở tương đương \(\dfrac{1}{R_{td}}=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) \(\Rightarrow I=\dfrac{U}{R_{td}}=9.\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) với a,b,c>0

áp dụng bất đẳng thức cô si cho \(\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c}\)  \(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{3}{\sqrt[3]{abc}}\ge\dfrac{3}{\left(\dfrac{a+b+c}{3}\right)}=\dfrac{9}{a+b+c}=9\)

\(\Leftrightarrow9\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge81\Leftrightarrow I\ge81\) I min =81 ( úi dồi ôi O_o hơi to mà vẫn đúng đá nhỉ)

dấu ''='' xảy ra \(\Leftrightarrow a=b=c\left(2\right)\)

từ (1) (2) \(\Rightarrow a=b=c=\dfrac{1}{3}\left(\Omega\right)\)

vậy ... (V LUN MẤT CẢ BUỔI TỐI R BÀI KHÓ QUÁ EM ĐANG ÔN HSG À )

 

 

Bình luận (2)
H24
19 tháng 5 2021 lúc 21:09

em ơi chụp cả cái mạch điện a xem nào sao chụp nó bị mất r

Bình luận (1)
H24
Xem chi tiết
NT
2 tháng 7 2023 lúc 21:56

3:

a:Các tia trên hình là Ax,Ay,Bx,By,Cx,Cy

=>Có 6 tia

b: AB<AC

=>B nằm giữa A và C

=>AB+BC=AC

=>BC=4cm

c: AI=3/2=1,5cm

CI=7-1,5=5,5cm

Bình luận (0)
PA
Xem chi tiết
NM
26 tháng 9 2021 lúc 17:50

\(1,\\ a,\dfrac{8x}{2xy}=\dfrac{4x}{y}\\ b,\dfrac{2xy}{6y}=\dfrac{x}{3}\\ c,\dfrac{3\left(x+2\right)}{2x}=\dfrac{6\left(x+2\right)}{4x}\\ d,\dfrac{4\left(x-2\right)}{3\left(x+1\right)}=\dfrac{8\left(x-2\right)x}{6\left(x+1\right)x}\\ 2,\\ \dfrac{x^2+3x+2}{x^2+x}=\dfrac{x^2+x+2x+2}{x\left(x+1\right)}=\dfrac{\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)}=\dfrac{x+2}{x}\\ 3,\\ \dfrac{x^2-3x}{x^2-9}=\dfrac{x}{x+3}\)

Bình luận (0)
PA
Xem chi tiết
NT
26 tháng 9 2021 lúc 23:08

Bài 3: 

Ta có: \(x^2-2x+4=\left(x-1\right)^2+3\ge3\forall x\)

\(\Leftrightarrow P=\dfrac{15}{x^2-2x+4}=\dfrac{15}{\left(x-1\right)^2+3}\le5\forall x\)

Dấu '=' xảy ra khi x=1

Bình luận (0)
DK
Xem chi tiết
NT
21 tháng 10 2021 lúc 20:34

\(B=-x^2+2x-4\)

\(=-\left(x^2-2x+4\right)\)

\(=-\left(x-1\right)^2-3\le-3\forall x\)

Dấu '=' xảy ra khi x=-3

Bình luận (0)
H24
Xem chi tiết
NT
2 tháng 2 2023 lúc 0:10

Bài 2:

a: \(\text{Δ}=\left(-2\right)^2-4\left(m-3\right)=4-4m+12=-4m+16\)

Để pt vô nghiệm thì -4m+16<0

=>m>4

Để phương trình co nghiệmduy nhất thì -4m+16=0

=>m=4

Để phương trình có hai nghiệm phân biệt thì -4m+16>0

=>m<4

b: \(\text{Δ}=\left(2m-2\right)^2-4\left(m^2-m+1\right)\)

\(=4m^2-8m+4-4m^2+4m-4=-4m\)

Để pt vô nghiệm thì -4m<0

=>m>0

Để phương trình co nghiệmduy nhất thì -4m=0

=>m=0

Để phương trình có hai nghiệm phân biệt thì -4m>0

=>m<0

c: \(\Delta=\left(-m\right)^2-4\cdot1\cdot1=m^2-4\)

Để pt vô nghiệm thì m^2-4<0

=>-2<m<2

Để phương trình co nghiệmduy nhất thì m^2-4=0

=>m=2 hoặc m=-2

Để phương trình có hai nghiệm phân biệt thì m^2-4>0

=>m>2 hoặc m<-2

Bình luận (0)

Công ty cổ phần BINGGROUP © 2014 - 2025
Liên hệ: Hà Đức Thọ - Hotline: 0986 557 525 - Email: a@olm.vn hoặc hdtho@hoc24.vn