Những câu hỏi liên quan
NH
Xem chi tiết
NT
9 tháng 11 2023 lúc 18:50

\(90^0< a< 180^0\)

=>\(cosa< 0\)

\(sin^2a+cos^2a=1\)

=>\(cos^2a+\dfrac{9}{25}=1\)

=>\(cos^2a=1-\dfrac{9}{25}=\dfrac{16}{25}\)

mà cosa<0

nên \(cosa=-\dfrac{4}{5}\)

\(tana=\dfrac{sina}{cosa}=\dfrac{3}{5}:\dfrac{-4}{5}=-\dfrac{3}{4}\)

\(A=2\cdot cos^2a-5\cdot tan^2a\)

\(=2\cdot\left(-\dfrac{4}{5}\right)^2-5\cdot\left(-\dfrac{3}{4}\right)^2\)

\(=2\cdot\dfrac{16}{25}-5\cdot\dfrac{9}{16}\)

\(=\dfrac{32}{25}-\dfrac{45}{16}=\dfrac{-613}{400}\)

Bình luận (0)
PY
Xem chi tiết
LQ
30 tháng 7 2017 lúc 22:00

sin/ cos = tan 
từ đó tự làm nhé

Bình luận (0)
NQ
Xem chi tiết
NT
27 tháng 10 2023 lúc 13:48

a: loading...

b: \(B=3-sin^290^0+2\cdot cos^260^0-3\cdot tan^245^0\)

\(=3-1+2\cdot\left(\dfrac{1}{2}\right)^2-3\cdot1^2\)

\(=2-3+2\cdot\dfrac{1}{4}=-1+\dfrac{1}{2}=-\dfrac{1}{2}\)

c: \(C=sin^245^0-2\cdot sin^250^0+3\cdot cos^245^0-2\cdot sin^240^0+4\cdot tan55\cdot tan35\)

\(=\left(\dfrac{\sqrt{2}}{2}\right)^2+3\cdot\left(\dfrac{\sqrt{2}}{2}\right)^2-2\cdot\left(sin^250^0+sin^240^0\right)+4\)

\(=\dfrac{1}{2}+3\cdot\dfrac{1}{2}-2+4\)

\(=2-2+4=4\)

Bình luận (0)
TD
Xem chi tiết
AH
20 tháng 11 2021 lúc 9:51

Lời giải:

$\cos a=\sqrt{1-\sin ^2a}=\frac{4}{5}$

$\tan a=\frac{\sin a}{\cos a}=\frac{3}{5}: \frac{4}{5}=\frac{3}{4}$

$A=2\tan a+\cos a=2.\frac{3}{4}+\frac{4}{5}=\frac{23}{10}$

Bình luận (0)
TK
Xem chi tiết
TK
31 tháng 10 2016 lúc 11:41

mình ko bt cách viết  phân số nên đường gạch ngang mờ mờ mà các bạn nhìn là phân số nhé

Bình luận (0)
QQ
Xem chi tiết
H24
Xem chi tiết
AH
31 tháng 7 2023 lúc 20:10

Lời giải:

a. 

\(A=\frac{3}{2}-2(\frac{\cos x}{\sin x})^2=\frac{3}{2}-2.(\frac{1}{\tan x})^2=\frac{3}{2}-\frac{1}{2}(\frac{-3}{2})^2=-3\)

b.

\(A=\frac{1}{2}(\frac{\sin x}{\cos x})^2-\frac{5}{2}=2(\frac{1}{\cot x})^2-\frac{5}{2}=2(\frac{5}{3})^2-\frac{5}{2}=\frac{55}{18}\)

Bình luận (0)
HM
31 tháng 7 2023 lúc 20:19

a, \(A=\dfrac{3sin^2\left(x\right)-cos^2\left(x\right)}{2sin^2\left(x\right)}=\dfrac{3}{2}-\dfrac{1}{2}\dfrac{cos^2\left(x\right)}{sin^2\left(x\right)}=\dfrac{3}{2}-\dfrac{1}{2}\cdot\dfrac{1}{tan^2\left(x\right)}=\dfrac{3}{2}-\dfrac{1}{2}\cdot\left(-\dfrac{3}{2}\right)^2=-3\)

b, \(A=\dfrac{sin^2\left(x\right)-5cos^2\left(x\right)}{2cos^2\left(x\right)}=\dfrac{1}{2}\dfrac{sin^2\left(x\right)}{cos^2\left(x\right)}-\dfrac{5}{2}=\dfrac{1}{2}\cdot\dfrac{1}{cot^2\left(x\right)}-\dfrac{5}{2}=\dfrac{1}{2}\cdot\left(\dfrac{5}{3}\right)^2-\dfrac{5}{2}=\dfrac{55}{18}\)

Bình luận (0)
MM
Xem chi tiết
NL
17 tháng 7 2021 lúc 23:10

\(A=\left(\dfrac{1-cos2x}{2}\right)^2+2\left(\dfrac{1+cos2x}{2}\right)^2\)

\(=\dfrac{3}{4}cos^22x+\dfrac{1}{2}cos2x+\dfrac{3}{4}\)

\(A=\dfrac{1}{12}\left(3cos2x+1\right)^2+\dfrac{2}{3}\ge\dfrac{2}{3}\)

\(A_{min}=\dfrac{2}{3}\) khi \(cos2x=-\dfrac{1}{3}\)

\(A=\dfrac{3cos^22x+2cos2x-5}{4}+2=\dfrac{\left(3cos2x+5\right)\left(cos2x-1\right)}{4}+2\le2\)

\(A_{max}=2\) khi \(cos2x=1\)

Bình luận (0)
NT
Xem chi tiết
TQ
26 tháng 11 2018 lúc 16:51

1.

a) \(\left(1-cos_x\right)\left(1+cos_x\right)-sin^2_x=1-cos^2_x-sin^2_x=1-\left(cos^2_x+sin^2_x\right)=1-1=0\)

b) \(tan^2_x\left(2.cos^2_x+sin^2_x-1\right)+cos^2_x=tan^2_x\left(cos^2_x+sin^2_x+cos^2_x-1\right)+cos^2_x=tan^2_x\left(1-1+cos^2_x\right)+cos^2_x=tan^2_x.cos^2_x+cos^2_x=\left(tan_x.cos_x\right)^2+cos^2_x=sin^2_x+cos^2_x=1\)2. Ta có \(9>5\Leftrightarrow\sqrt{9}>\sqrt{5}\Leftrightarrow3>\sqrt{5}\Leftrightarrow3-\sqrt{5}>0\)

Vậy \(3-\sqrt{5}>0\)

Bình luận (0)