Những câu hỏi liên quan
PB
Xem chi tiết
CT
9 tháng 4 2019 lúc 16:23

Đặt A = 22009 + 22008 + ... + 21 + 20. Khi đó, M = 22010 - A

Ta có 2A = 22010 + 22009 + ... + 22 + 21.

Suy ra 2A - A = 22010 - 20 = 22010 - 1.

Do đó M = 22010 - A = 22010 - (22010 - 1) = 22010 - 22010 + 1 = = 1.

Bình luận (0)
VD
29 tháng 12 2021 lúc 16:48

M=2^2010-(2^2009+2^2008+2^2007+...+2^1+2^0)

M=22010-22009-22008-22007-...-21-20

=>2M=22011-22010-22009-22008-...-22-21

=>2M-M=22011-22010-22009-22008-...-22-21-(22010-22009-22008-22007-...-21-20)

=>M=22011-22010-22009-22008-...-22-21-22010+22009+22008+22007+...+21+20

=22011-22010-22010+20

=22011-2.22010+1

=22011-22011+1

=1

vậy M=1

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
TC
27 tháng 7 2021 lúc 10:16

undefined

Bình luận (0)
TC
27 tháng 7 2021 lúc 10:07

undefined

Bình luận (1)
NT
Xem chi tiết
PB
Xem chi tiết
CT
9 tháng 4 2019 lúc 14:40

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 8 2019 lúc 3:57

A = 1 + 2 + 2 2 + . . . + 2 2007

2 A = 2 + 2 2 + . . . + 2 2007 + 2 2008

A = 2A - A =  ( 2 + 2 2 + . . . + 2 2007 + 2 2008 ) - ( 1 + 2 + 2 2 + . . . + 2 2007 ) =  2 2008 - 1

Vậy  A = 2 2008 - 1

Bình luận (0)
SL
Xem chi tiết
AP
30 tháng 4 2021 lúc 16:59

Đặt A=1+2+22+...+220081+2+22+...+22008

=>2A=2.(1+2+22+...+220081+2+22+...+22008)

=>2A=2+22+23+...+220092+22+23+...+22009

=>2A-A=(2+22+23+...+220092+22+23+...+22009)-(1+2+22+...+220081+2+22+...+22008)

=>A=22009−122009−1

=>A=(-1).(−2)2009(−2)2009+(-1).1

=>A=(-1).[(−2)2009+1][(−2)2009+1]

=>A=(-1).(1−22009)(1−22009)

=>1+2+22+...+220081+2+22+...+22008/1-2200922009

=

Bình luận (0)

Giải:

Đặt A=1+2+22+23+...+22008

    2A=2+22+23+24+...+22009

2A-A=(1+2+22+23+...+22008)-(2+22+23+24+...+22009)

    A =1-22009

Vậy B=1-22009/1-22009=1

Chúc bạn học tốt!

Bình luận (1)
PB
Xem chi tiết
CT
24 tháng 8 2018 lúc 13:50

Ta có: A =  1   +   2   +   2 2   +   . . .   +   2 2009   +   2 2010

= 1 + 2 ( 1 + 2 +  2 2 ) + ... + 2 2008  ( 1 + 2 +  2 2  )

= 1 + 2 ( 1 + 2 + 4 ) + ... + 22008 ( 1 + 2 + 4 )

= 1 + 2 . 7 + ... +  2 2008  . 7 = 1 + 7 ( 2 + ... +  2 2008  )

Mà 7 ( 2 + ... +  2 2008 ) ⋮ 7. Do đó: A chia cho 7 dư 1.

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 2 2018 lúc 17:17

Ta có: A = 1 + 2 + 2 2  + 2 3 + ... + 2 2008  + 2 2009  + 2 2010

 

= 1 + 2 ( 1 + 2 + 22 ) + ... +  2 2008  ( 1 + 2 + 22 )

= 1 + 2 ( 1 + 2 + 4 ) + ... +  2 2008 ( 1 + 2 + 4 )

= 1 + 2 . 7 + ... + 2 2008 . 7 = 1 + 7 ( 2 + ... +  2 2008  )

Mà 7 ( 2 + ... +  2 2008 ) ⋮ 7. Do đó: A chia cho 7 dư 1.

Bình luận (0)
TN
Xem chi tiết
MH
16 tháng 9 2021 lúc 14:56

A \(=\)\(1+2^1+2^2+...+2^{2007}\)

⇒2 A \(=\)\(2+2^2+...+2^{2007}+2^{2008}\)

2A - A \(=\)( \(2+2^2+...+2^{2007}+2^{2008}\) ) - ( \(1+2^1+2^2+...+2^{2007}\) )

A\(=\)\(2^{2008}-1\)

\(3A=3\left(2^{2008}-1\right)\)

      \(=3.2^{2008}-3\)

 

Bình luận (0)
HT
Xem chi tiết
KL
14 tháng 11 2023 lúc 17:14

A = 2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰¹⁰

⇒ 2A = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰¹¹

⇒ A = 2A - A = (2 + 2² + 2³ + 2⁴ + ... + 2²⁰¹¹) - (2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰¹⁰)

= 2²⁰¹¹ - 2⁰

= 2²⁰¹¹ - 1

= B

Vậy A = B

Bình luận (0)
TT
30 tháng 10 2024 lúc 21:14

BÀI BẠN GIỐNG Y CHANG BÀI MIK LUÔN

Bình luận (0)