\(3\sqrt{x+1-1=38}\)
3 \(\sqrt{x+1}\) - 1 = 38
GPT: \(2\left(x-3\right)\sqrt{x^3+3x^2+x+3}+2\sqrt{x+1}=2x^3-11x^2+29x-38\)
Cho \(x=\frac{\sqrt{4+2\sqrt{3}-\sqrt{3}}}{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}-2}\).Tính M=\(\left(x^2+x+1\right)^{2010}\)
Giải pt : a) \(8x^2-13x+7=\left(1+\frac{1}{x}\right)\sqrt[3]{3x^2-2}\)
b) \(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=9x-3\)
c) \(2\sqrt{x+1}+6\sqrt{9-x^2}+6\sqrt{\left(x+1\right)\left(9-x^2\right)}=38+10x-2x^2-x^3\)
Vũ Minh Tuấn, Băng Băng 2k6, Hoàng Tử Hà, đề bài khó wá, Lê Gia Bảo, Aki Tsuki, Nguyễn Việt Lâm,
Lê Thị Thục Hiền, Nguyễn Trúc Giang, Học 24h, @tth_new, @Akai Haruma
Help me! Cần gấp
thanks!
Giải các phương trình sau:
a \(x^2-11=0\)
b \(x^2-12x+52=0\)
c \(x^2-3x-28=0\)
d \(x^2-11x+38=0\)
e \(6x^2+71x+175=0\)
f \(x^2-\left(\sqrt{2}+\sqrt{8}\right)x+4=0\)
g\(\left(1+\sqrt{3}\right)x^2-\left(2\sqrt{3}+1\right)x+\sqrt{3}=0\)
a.
$x^2-11=0$
$\Leftrightarrow x^2=11$
$\Leftrightarrow x=\pm \sqrt{11}$
b. $x^2-12x+52=0$
$\Leftrightarrow (x^2-12x+36)+16=0$
$\Leftrightarrow (x-6)^2=-16< 0$ (vô lý)
Vậy pt vô nghiệm.
c.
$x^2-3x-28=0$
$\Leftrightarrow x^2+4x-7x-28=0$
$\Leftrightarrow x(x+4)-7(x+4)=0$
$\Leftrightarrow (x+4)(x-7)=0$
$\Leftrightarrow x+4=0$ hoặc $x-7=0$
$\Leftrightarrow x=-4$ hoặc $x=7$
d.
$x^2-11x+38=0$
$\Leftrightarrow (x^2-11x+5,5^2)+7,75=0$
$\Leftrightarrow (x-5,5)^2=-7,75< 0$ (vô lý)
Vậy pt vô nghiệm
e.
$6x^2+71x+175=0$
$\Leftrightarrow 6x^2+21x+50x+175=0$
$\Leftrightarrow 3x(2x+7)+25(2x+7)=0$
$\Leftrightarrow (3x+25)(2x+7)=0$
$\Leftrightarrow 3x+25=0$ hoặc $2x+7=0$
$\Leftrightarrow x=-\frac{25}{3}$ hoặc $x=-\frac{7}{2}$
f.
$x^2-(\sqrt{2}+\sqrt{8})x+4=0$
$\Leftrightarrow x^2-\sqrt{2}x-2\sqrt{2}x+4=0$
$\Leftrightarrow x(x-\sqrt{2})-2\sqrt{2}(x-\sqrt{2})=0$
$\Leftrightarrow (x-\sqrt{2})(x-2\sqrt{2})=0$
$\Leftrightarrow x-\sqrt{2}=0$ hoặc $x-2\sqrt{2}=0$
$\Leftrightarrow x=\sqrt{2}$ hoặc $x=2\sqrt{2}$
g.
$(1+\sqrt{3})x^2-(2\sqrt{3}+1)x+\sqrt{3}=0$
$\Leftrightarrow (1+\sqrt{3})x^2-(1+\sqrt{3})x-(\sqrt{3}x-\sqrt{3})=0$
$\Leftrightarrow (1+\sqrt{3})x(x-1)-\sqrt{3}(x-1)=0$
$\Leftrightarrow (x-1)[(1+\sqrt{3})x-\sqrt{3}]=0$
$\Leftrightarrow x-1=0$ hoặc $(1+\sqrt{3})x-\sqrt{3}=0$
$\Leftrightarrow x=1$ hoặc $x=\frac{3-\sqrt{3}}{2}$
Bài 1:
Cho \(x=\frac{\sqrt{\left(4+2\sqrt{3}\right)}-\sqrt{3}}{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}-2}\)
Tính \(P=\left(x^2+x+1\right)^{2013}+\left(x^2+x-1\right)^{2013}\)
Giải giúp mk vs ạ thanks m.n nhìu nà !!!!! :)))
Ta có
\(x=\frac{\sqrt{4+2\sqrt{3}}-\sqrt{3}}{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}-2}\)
\(=\frac{\sqrt{3+2\sqrt{3}+1}-\sqrt{3}}{\left(\sqrt{5}+2\right)\sqrt[3]{5\sqrt{5}-3.5.2+3.4.\sqrt{5}-8}-2}\)
\(=\frac{\sqrt{3}+1-\sqrt{3}}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)-2}=\frac{1}{5-4-2}=-1\)
Thế vào ta được
\(P=\left(x^2+x+1\right)^{2013}+\left(x^2+x-1\right)^{2013}\)
\(=\left(1-1+1\right)^{2013}+\left(1-1-1\right)^{2013}=1-1=0\)
Giải các phương trình sau:
a.\(3\sqrt{18x}-5\sqrt{8x}+4\sqrt{50x}=38\)
b.\(3\sqrt{12x}-2\sqrt{27x}+4\sqrt{3x}=8\)
c.\(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
a) ĐKXĐ: \(x\ge0\)
Ta có: \(3\sqrt{18x}-5\sqrt{8x}+4\sqrt{50x}=38\)
\(\Leftrightarrow9\sqrt{2x}-10\sqrt{2x}+20\sqrt{2x}=38\)
\(\Leftrightarrow19\sqrt{2x}=38\)
\(\Leftrightarrow\sqrt{2x}=2\)
\(\Leftrightarrow2x=4\)
hay x=2(thỏa ĐK)
b) ĐKXĐ: \(x\ge0\)
Ta có: \(3\sqrt{12x}-2\sqrt{27x}+4\sqrt{3x}=8\)
\(\Leftrightarrow6\sqrt{3x}-6\sqrt{3x}+4\sqrt{3x}=8\)
\(\Leftrightarrow\sqrt{3x}=2\)
\(\Leftrightarrow3x=4\)
hay \(x=\dfrac{4}{3}\)
c) ĐKXĐ: \(x\ge5\)
Ta có: \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\)
\(\Leftrightarrow\sqrt{x-5}=2\)
\(\Leftrightarrow x-5=4\)
hay x=9
a)
\(3.3\sqrt{2x}-5.2\sqrt{2x}+4.5.\sqrt{2x}=38\\ \Leftrightarrow19\sqrt{2x}=38\\ \Leftrightarrow\sqrt{2x}=2\\ \Leftrightarrow x=2\)
b)
\(3.2.\sqrt{3x}-2.3.\sqrt{3x}+4.\sqrt{3x}=8\\ \Leftrightarrow4\sqrt{3x}=8\\ \Leftrightarrow\sqrt{3x}=2\\\Leftrightarrow x=\dfrac{2^2}{3}=\dfrac{4}{3} \)
c)
\(\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\\ \Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\\ \Leftrightarrow2\sqrt{x-5}=4\\ \Leftrightarrow x-5=4\\ \Leftrightarrow x=9\)
BT: Giải pt
a, \(\sqrt{2x-1}=\sqrt{2}-1\)
b, \(\sqrt{3x+11}=3+\sqrt{2}\)
c, \(\sqrt{x+5}=\sqrt{3}-2\)
d, \(\sqrt{x+38}=3+\sqrt{5}\)
Lời giải:
a) ĐK: $x\geq \frac{1}{2}$
PT $\Rightarrow 2x-1=(\sqrt{2}-1)^2=3-2\sqrt{2}$
$\Leftrightarrow 2x=4-2\sqrt{2}$
$\Leftrightarrow x=2-\sqrt{2}$ (thỏa mãn)
Vậy.........
b) ĐK: $x\geq \frac{-11}{3}$
PT $\Rightarrow 3x+11=(3+\sqrt{2})^2=11+6\sqrt{2}$
$\Leftrightarrow x=2\sqrt{2}$ (thỏa mãn)
Vậy.........
c)
ĐK: $x\geq -5$
Ta thấy: $\sqrt{x+5}\geq 0$ với mọi $x\geq -5$, mà $\sqrt{3}-2< 0$ nên PT vô nghiệm.
d)
ĐK: $x\geq -38$
PT $\Rightarrow x+38=(3+\sqrt{5})^2=14+6\sqrt{5}$
$\Leftrightarrow x=6\sqrt{5}-24$ (thỏa mãn)
Vậy........
Giải phương trình:
a)\(\sqrt{7-x}+\sqrt{x-5}=x^2-12x+38\)
b) \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{x^2+2x-3}=4-2x\)
a) \(\sqrt{7-x}+\sqrt{x-5}=x^2-12x+38\)
ĐKXĐ : \(5\le x\le7\)
Bình phương vế trái ta được:
\(VT^2=7-x+x-5+2\sqrt{\left(7-x\right)\left(x-5\right)}\)
\(=2+2\sqrt{-x^2+12x-35}\)
\(=2+2\sqrt{1-\left(x^2-12x+36\right)}\)
\(=2+2\sqrt{1-\left(x-6\right)^2}\le2+2.1=4\)
=> \(VT\le2\) \(\left(VT\ge0\right)\) (1)
\(VP=x^2-12x+38=\left(x^2-12x+36\right)+2=\left(x-6\right)^2+2\ge2\) (2)
Từ (1) và (2) suy ra VT=VP=2
=> x=6 (thỏa mãn ĐKXĐ)
Vậy ...
b)\(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{x^2+2x-3}=4-2x\)
ĐKXĐ : \(x\ge1\)
Với ĐKXĐ ta luôn có: \(VT=\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x+3\right)}\ge\sqrt{4}=2\) (1)
\(VP=4-2x=2\left(2-x\right)\le2\) (2)
Từ (1) và (2) suy ra VT = VP = 2
=> x=1 ( Thỏa mãn ĐKXĐ )
Vậy ...
Câu b) mình làm thấy sai sai ấy. Bạn nào biết vào giải giúp với :) cảm ơn :)