cho a,b,c,d >0
cm: \(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}\ge\frac{64}{a+b+c+d}\)
cho a,b,c,d > 0
cm: \(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}\ge\frac{64}{a+b+c+d}\)
Áp dụng BĐT Cauchy -Schwarz dạng cộng mẫu thôi:
\(\text{VT}=\frac{1^2}{a}+\frac{1^2}{b}+\frac{2^2}{c}+\frac{4^2}{d}\geq \frac{(1+1+2+4)^2}{a+b+c+d}=\frac{64}{a+b+c+d}=\text{VP}\)
Dấu bằng xảy ra khi \(a=b=\frac{c}{2}=\frac{d}{4}>0\)
áp dụng BĐT cauchy-schwazs:
\(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}\ge\frac{\left(1+1+2+4\right)^2}{a+b+c+d}=\frac{64}{a+b+c+d}\)
dấu = xảy ra khi \(\frac{1}{a}=\frac{1}{b}=\frac{2}{c}=\frac{4}{d}\Leftrightarrow a=b=\frac{c}{2}=\frac{d}{4}\)
cho a,b,c >0.Chứng minh:\(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}\ge\frac{64}{a+b+c+d}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}=\frac{1^2}{a}+\frac{1^2}{b}+\frac{2^2}{c}+\frac{4^2}{d}\)
Áp dụng BĐT Cauchy-Schwar dạng Engel ta có:
\(\frac{1^2}{a}+\frac{1^2}{b}+\frac{2^2}{c}+\frac{4^2}{d}\ge\frac{\left(1+1+2+4\right)^2}{a+b+c+d}\)
\(=\frac{8^2}{a+b+c+d}=\frac{64}{a+b+c+d}=VP\)
Bài: Cho a,b,c,d >0. Chứng minh:
\(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}\ge\frac{64}{a+b+c+d}\)
Help me!!!
áp dụng bất đẳng thức:\(\frac{1}{a}\)+\(\frac{1}{b}\)=>\(\frac{4}{a+b}\)(áp dụng 2 cái đầu trc,rồi lấy KQ đó áp dụng típ vào cái thứ 3,rồi cái cuối
Ta có
\(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}\ge\frac{\left(1+1+2+4\right)^2}{a+b+c+d}=\frac{64}{a+b+c+d}\)
Cho các số dương a,b,c,d. CMR: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{16}{a+b+c+d}\)
áp dụng bất đẳng thức Cauchy-schwaz
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{\left(1+1+1+1\right)^2}{a+b+c+d}\)=\(\frac{16}{a+b+c+d}\)(đpcm)
Cho a, b, c, d dương. CM:
1) \(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
2) \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b+c}{\sqrt[3]{abc}}\)
3) \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{d^2}+\frac{d^2}{a^2}\ge\frac{a+b+c+d}{\sqrt[4]{abcd}}\)
4) \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9;a+b+c\le1\)
Làm tạm một câu rồi đi chơi, lát làm cho.
4)
Áp dụng bất đẳng thức Cauchy-Schwarz :
\(VT\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
2/ Cô: \(\frac{2a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a.a.b}{b.b.c}}=3\sqrt[3]{\frac{a^3}{abc}}=\frac{3a}{\sqrt[3]{abc}}\)
Tương tự hai BĐT còn lại và cộng theo vế thu được:
\(3.VT\ge3.VP\Rightarrow VT\ge VP^{\left(Đpcm\right)}\)
Đẳng thức xảy ra khi a = b= c
a, Cho a,b>0 , CMR: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
b. Cho a,b,c,d > 0. CMR: \(\frac{a-d}{d+b}+\frac{d-b}{b+c}+\frac{b-c}{c+a}+\frac{c-a}{a+d}\ge0\)
a/ Biến đổi tương đương:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy BĐT được chứng minh
b/ \(VT=\frac{a-d}{b+d}+1+\frac{d-b}{b+c}+1+\frac{b-c}{a+c}+1+\frac{c-a}{a+d}+1-4\)
\(VT=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{a+c}+\frac{c+d}{a+d}-4\)
\(VT=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)
\(\Rightarrow VT\ge\left(a+b\right).\frac{4}{b+d+a+c}+\left(c+d\right).\frac{4}{b+c+a+d}-4\)
\(\Rightarrow VT\ge\frac{4}{\left(a+b+c+d\right)}\left(a+b+c+d\right)-4=4-4=0\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=d\)
Chứng minh với a,b,c,d không âm ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{16}{a+b+c+d}\)
áp dụng bđt này nhé: \(\frac{1}{x}+\frac{1}{y}\text{≥ }\frac{4}{x+y}\)
ta có:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\text{≥ }\frac{4}{a+b}+\frac{4}{c+d}\text{= }4.\left(\frac{1}{a+b}+\frac{1}{c+d}\right)\text{\text{≥ }}4.\frac{4}{a+b+c+d}=\frac{16}{a+b+c+d}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\text{≥ }\frac{4}{a+b}+\frac{4}{c+d}\)
=\(4.\left(\frac{1}{a+b}+\frac{1}{c+d}\right)\text{≥ }4.\frac{4}{a+b+c+d}\)
=\(\frac{16}{a+b+c+d}\)
Cho a,b,c,d là 4 số thực dương thỏa mãn a+b+c+d=1.CMR:
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{1}{2}\)
Áp dụng bđt Cosi ta có: \(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2;\frac{b^2}{b+c}+\frac{b+c}{4}\ge2;\frac{c^2}{c+d}+\frac{c+d}{4}\ge2\)\(;\frac{d^2}{d+a}+\frac{d+a}{4}\ge2\)
Cộng theo vế và a+b+c+d=1 ta có đpcm
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{a^2}{a+b}=\frac{a+b}{4};\frac{b^2}{b+c}=\frac{b+c}{4};\frac{c^2}{c+d}=\frac{c+d}{4};\frac{d^2}{d+a}=\frac{d+a}{4}\\\\a=b=c=1\end{cases}}\)
\(\Leftrightarrow a=b=c=d=\frac{1}{4}\)
Bunyakovsky dạng phân thức
Theo bất đẳng thức Svacxo :
\(VT\ge\frac{\left(a+b+c+d\right)^2}{2\left(a+b+c+d\right)}=\frac{1}{2}\)
Đẳng thức xảy ra khi \(a=b=c=d=\frac{1}{4}\)
Vậy ta có điều phải chứng minh
Cho các số dương a,b,c,d. CMR: \(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{4}{c}\)+\(\frac{16}{d}\)luôn lớn hơn hoặc bằng \(\frac{64}{a+b+c+d}\)
có thể áp dụng luôn công thức tổng quát của btp nhé
Tổng quát \(\frac{a_1^2}{x_1}+\frac{a_2^2}{x_2}+...+\frac{a_n^2}{x_n}\ge\frac{\left(a_1+a_2+...+a_n\right)^2}{x_1+x_2+...+x_n}\)(với x1,x2,...xn >0 )
phải c/m nhé
BTP :\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)(với mọi abxy, x,y>0) đây còn đc cọi bđt cauchy schwarz )
c/m k có gì khó. nhân chéo quy đồng ( tự c/m nhé )
Đặt \(A=\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}\)
Áp dụng liên tục btp ta được \(A\ge\frac{\left(1+1\right)^2}{a+b}+\frac{2^2}{c}+\frac{4^2}{d}\ge\frac{\left(1+1+2\right)^2}{a+b+c}+\frac{4^2}{d}\ge\frac{\left(1+1+2+4\right)^2}{a+b+c+d}=\frac{64}{a+b+c+d}\)(dpcm)
dấu = xảy ra khi và chỉ khi a=b=c/2=d/4