H24

cho a,b,c,d > 0

cm: \(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}\ge\frac{64}{a+b+c+d}\)

AH
22 tháng 2 2017 lúc 21:45

Áp dụng BĐT Cauchy -Schwarz dạng cộng mẫu thôi:

\(\text{VT}=\frac{1^2}{a}+\frac{1^2}{b}+\frac{2^2}{c}+\frac{4^2}{d}\geq \frac{(1+1+2+4)^2}{a+b+c+d}=\frac{64}{a+b+c+d}=\text{VP}\)

Dấu bằng xảy ra khi \(a=b=\frac{c}{2}=\frac{d}{4}>0\)

Bình luận (0)
H24
22 tháng 2 2017 lúc 21:53

áp dụng BĐT cauchy-schwazs:

\(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}\ge\frac{\left(1+1+2+4\right)^2}{a+b+c+d}=\frac{64}{a+b+c+d}\)

dấu = xảy ra khi \(\frac{1}{a}=\frac{1}{b}=\frac{2}{c}=\frac{4}{d}\Leftrightarrow a=b=\frac{c}{2}=\frac{d}{4}\)

Bình luận (1)

Các câu hỏi tương tự
QD
Xem chi tiết
KK
Xem chi tiết
QB
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
LT
Xem chi tiết
NP
Xem chi tiết