cho hình thoi ABCD. Trên cạnh AD lấy điểm H (H khác A,D). Chứng minh Scdh=Sdbh
Cho hình thoi ABCD có ∠ A = 60 o . Trên cạnh AD lấy điểm H và trên cạnh CD lấy điểm K sao cho AH = DK. Số đo góc ∠HBK là:
A. 30 °
B. 60 °
C. 45 °
D. 90 °
Cho hình thoi ABCD. Lấy điểm E trên cạnh AB sao cho \(\dfrac{AE}{AB}=\dfrac{2}{3}\) và điểm F trên cạnh CD sao cho \(\dfrac{DF}{DC}=\dfrac{1}{3}\)
a) Tứ giác AECF, EBFD là hình gì?
b) AD và EF kéo dài gặp nhau ở H. Tính \(\dfrac{HD}{HA}\)
c) Chứng minh HC vuông góc với AC và F là trọng tâm tam giác HDB
a) -Có: \(\dfrac{DF}{DC}=\dfrac{1}{3}\) mà \(AE+EB=AB\) nên \(\dfrac{CF}{DC}=\dfrac{2}{3}\).
\(AB=DC\)(ABCD là hình thoi) \(\Rightarrow\dfrac{CF}{AB}=\dfrac{2}{3}\)
Mà \(\dfrac{AE}{AB}=\dfrac{2}{3}\) (gt) nên \(AE=CF\).
Mà EB//DF (ABCD là hình thoi) nên \(AECF\) là hình hình bình.
-Tương tự như vậy, EBFD là hình bình hành.
b) -Có: \(\dfrac{AE}{AB}=\dfrac{2}{3}\) mà \(AE+EB=AB\) nên \(\dfrac{EB}{AB}=\dfrac{1}{3}\Rightarrow\dfrac{EB}{AE}=\dfrac{1}{2}\).
-Có: \(\dfrac{DF}{DC}=\dfrac{1}{3}\) mà \(\dfrac{EB}{DC}=\dfrac{1}{3}\left(\dfrac{EB}{AB}=\dfrac{1}{3};AB=CD\right)\)
\(\Rightarrow DF=EB\) nên \(\dfrac{DF}{AE}=\dfrac{1}{2}\).
-Xét △AEH có: DF//AE (ABCD là hình thoi).
\(\Rightarrow\dfrac{DF}{AE}=\dfrac{HD}{HA}=\dfrac{DH}{AH}=\dfrac{1}{2}\) (định lí Ta-let).
c) -Có \(\dfrac{DH}{AH}=\dfrac{1}{2}\) nên D là trung điểm AH.
\(\Rightarrow AD=DH=CD=\dfrac{1}{2}AH\)
-Xét △ACH có:
CD là trung tuyến ứng với cạnh AH (D là trung điểm AH)
Mà \(CD=\dfrac{1}{2}AH\) (cmt)
Nên △ACH vuông tại C.
\(\Rightarrow\) HC vuông góc với AC.
-Gọi G là giao điểm của CD và BH.
-Có \(DH=CD\) (cmt) và \(CD=BC\) (ABCD là hình thoi)
Nên \(DH=BC\) mà DH//BC (ABCD là hình thoi).
\(\Rightarrow\) BDHC là hình bình hành.
-Mà G là giao điểm của CD và BH nên G là trung điểm CD và BH
\(\Rightarrow GD=\dfrac{1}{2}DC=\dfrac{1}{2}.3DF=\dfrac{3}{2}DF\)
\(\Rightarrow DF=\dfrac{2}{3}GD\).
-Xét △HDB có:
DG là trung tuyến (G là trung điểm BH).
F thuộc DG.
\(DF=\dfrac{2}{3}GD\) (cmt).
Nên F là trọng tâm của tam giác HDB.
Cho hình vuông ABCD. Lấy E, F lần lượt trên AB, AD sao cho AE = AF. Gọi H là hình chiếu của A lên DE.
a) C/m AH × AD = AE × DH.
b) C/m ∆AHF ~ ∆DHC.
c) Xác định vị trí của điểm E và F để SCDH = 4SAFH
a: Xét ΔAED vuông tại A và ΔHAD vuông tại H có
góc D chung
=>ΔAED đồng dạng với ΔHAD
=>AE/AH=AD/DH
=>AE*DH=AH*AD
b: AH/AE=DH/AD
=>AH/AE=DH/DC
=>AH/DH=AF/DC
=>ΔAHF đồng dạng với ΔDHC
Cho hình thoi ABCD có A=60 độ .Kẻ BH vuông góc với AD tại H Lấy E thuộc tia BH sao cho BH=HE .Nối EA và ED .Chứng minh rằng :
a H là trung điểm của AD
b Tứ giác ABDE là hình thoi
c D là trung điểm của CE
d AC=BE
Cho hình vuông ABCD có H và K lần lượt là trung điểm của các cạnh AB và AD. Trên đường thẳng vuông góc với (ABCD) tại H lấy điểm S khác H.
Chứng minh: CK vuông góc với SD
Cho hình bình hành ABCD. Trên cạnh AD, BC lần lượt lấy điểm H, G sao cho DH=BG a) Chứng minh: AGCH là hình bình hành. b) Gọi O là giao điểm của AC và BD. Chứng minh: G,O,H thẳng hàng c) Trên cạnh AB lấy điểm E, gọi F là giao điểm của EO với DC. Chứng minh:EGFH là hình bình hành
Bài 10: Cho hình thoi ABCD có hat A =60^ .Kẻ BH vuông góc với AD tạiH .Lấy E thuộc tia BH sao cho BH = HE Nối EA và ED . Chứng minh rằng: a) H là trung điểm của AD b) Tứ giác ABDE là hình thoi c) D là trung điểm của CE d) AC = BE .
Cho hình chữ nhật ABCD (AB > AD). Trên cạnh AD, BC lần lượt lấy các điểm M và N sao cho AM = CN.
c) Qua O vẽ đường thẳng d vuông góc với BD, d cắt AB tại P, cắt cạnh CD tại Q. chứng minh rằng PBQD là hình thoi.
c) PQ ⊥ BD (gt). Xét các tam giác vuông POB và QOD có:
∠POB = ∠QOD∠ (đối đỉnh),
OB = OD
∠PBO = ∠QDO (so le trong).
Do đó ΔPOB = ΔQOD (g.c.g) ⇒ BP = DQ
Lại có BP // DQ nên tứ giác PBQD là hình bình hành
Mặt khác PBQD có hai đường chéo vuông góc nên là hình thoi.
Cho hình vuông ABCD. Trên cạnh AB lấy điểm M, trên tia đối của CB lấy điểm N sao cho AM =CN . Gọi Ilà giao điểm của MN và CD.
GọI E là trung điểm của MN, tia DE cắt BC tại F. Qua M vẽ đường thẳng song song với AD cắt DF tại H. Chứng minh rằng : Tứ giác MFNH là hình thoi.
Chứng minh : Chu vi tam giác BMF không đổi khi m di động trên cạnh AB.
Bài 19. Cho hình thoi ABCD. Trên tia đối của tia BA lấy điểm E, trên tia đối của tia
CB lấy điểm F, trên ta đối của tia DC lấy điểm G, trên tia đối của tia AD lấy
điểm H sao cho BE = CF = DG = AH.
1. Chứng minh tứ giác EF GH là hình bình hành.
2. Chứng minh hình bình hành EF GH và hình thoi ABCD có chung tâm đối
xứng.
3. Nếu ABCD là hình vuông thì EF GH là hình gì? Tại sao?
1:
ta có:ABCD là hình thoi
=>\(\widehat{BAD}=\widehat{BCD};\widehat{ABC}=\widehat{ADC}\)
Ta có: \(\widehat{BAD}+\widehat{EAH}=180^0\)(hai góc kề bù)
\(\widehat{BCD}+\widehat{FCD}=180^0\)(hai góc kề bù)
mà \(\widehat{BAD}=\widehat{BCD}\)
nên \(\widehat{EAH}=\widehat{FCD}\)
Ta có: \(\widehat{ABC}+\widehat{EBC}=180^0\)(hai góc kề bù)
\(\widehat{ADC}+\widehat{ADG}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ADC}\)
nên \(\widehat{EBC}=\widehat{ADG}\)
Ta có: \(DA+AH=DH\)
\(AB+BE=AE\)
\(BC+CF=BF\)
\(CD+DG=CG\)
mà DA=AB=BC=CD và AH=BE=CF=DG
nên DH=AE=BF=CG
Xét ΔHAE và ΔFCG có
HA=FC
\(\widehat{HAE}=\widehat{FCG}\)
AE=CG
Do đó: ΔHAE=ΔFCG
=>HE=FG
Xét ΔHDG và ΔFBE có
DH=BF
\(\widehat{HDG}=\widehat{BFE}\)
DG=BE
Do đó: ΔHDG=ΔFBE
=>HG=FE
Xét tứ giác GHEF có
GH=EF
GF=HE
Do đó: GHEF là hình bình hành
2: Gọi O là giao điểm của AC và BD
Ta có: ABCD là hình thoi
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét tứ giác AHCF có
AH//CF
AH=CF
Do đó: AHCF là hình bình hành
=>AC cắt HF tại trung điểm của mỗi đường
mà O là trung điểm của AC
nên O là trung điểmcủa HF
Ta có: EHGF là hình bình hành
=>EG cắt HF tại trung điểm của mỗi đường
mà O là trung điểm của HF
nên O là trung điểm của EG
=>Hình bình hành EHGF và hình thoi ABCD có chung tâm