Những câu hỏi liên quan
LT
Xem chi tiết
NT
30 tháng 8 2021 lúc 23:04

Bài 2: 

a: Ta có: Om là tia phân giác của \(\widehat{xOy}\)

nên \(\widehat{xOm}=\widehat{yOm}=\dfrac{180^0}{2}=90^0\)

Do đó: Om\(\perp\)xy

b: Ta có: \(\widehat{xOa}+\widehat{mOa}=90^0\)

\(\widehat{mOb}+\widehat{yOb}=90^0\)

mà \(\widehat{mOa}=\widehat{yOb}\)

nên \(\widehat{xOa}=\widehat{mOb}\)

Bình luận (0)
MT
Xem chi tiết
TD
7 tháng 10 2021 lúc 11:11

chọn sai môn học rồi nha

Bình luận (0)
QA
7 tháng 10 2021 lúc 15:47

1. B
2. A

Bình luận (0)
MT
Xem chi tiết
TD
Xem chi tiết
NT
6 tháng 8 2021 lúc 10:52

a) Xét ΔAEN có 

D là trung điểm của AE

DM//EN

Do đó: M là trung điểm của AN

b) Hình thang DMCB có 

E là trung điểm của DB

EN//DM//CB

Do đó: N là trung điểm của MC

Suy ra: MN=NC

mà MN=AM

nên AM=MN=NC

c) Xét hình thang DMCB có 

E là trung điểm của DB

N là trung điểm của MC

Do đó: EN là đường trung bình của hình thang DMCB

Suy ra: \(EN=\dfrac{DM+CB}{2}\)

hay \(2EN=DM+BC\)

Bình luận (1)
H24
6 tháng 8 2021 lúc 14:58

a/ Xét △AEN có:

\(DM\text{//}EN\left(gt\right)\)

- D là trung điểm của AE \(\left(AD=AE\right)\)

=> DM là đường trung bình của △AEN. Vậy: M là trung điểm của AN (đpcm)

b/ Tứ giác BDMC có \(EN\text{ // }BC\left(gt\right)\) => Tứ giác BDMC là hình thang

 Hình thang BDMC có:

\(EN\text{ // }BC\left(gt\right)\)

- E là trung điểm của DB \(\left(DE=EB\right)\)

=> EN là đường trung bình của hình thang BDMC => N là trung điểm của MC hay \(MN=NC\)

- Mà \(AM=MN\left(cmt\right)\)

Vậy: \(AM=MN=NC\left(đpcm\right)\)

c/ - Ta có: EN là đường trung bình của hình thang BDMC (cmt)

=> \(EN=\dfrac{DM+BC}{2}\)

Vậy: \(2EN=2\cdot\dfrac{DN+BC}{2}=DN+BC\left(đpcm\right)\)

Bình luận (1)
NN
Xem chi tiết
TH
12 tháng 4 2021 lúc 21:43

4: Đặt \(x=\dfrac{a+b}{a-b};y=\dfrac{b+c}{b-c};z=\dfrac{c+a}{c-a}\).

Ta có \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=\dfrac{2a.2b.2c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)

\(\Rightarrow xy+yz+zx=-1\).

Bất đẳng thức đã cho tương đương:

\(x^2+y^2+z^2\ge2\Leftrightarrow\left(x+y+z\right)^2-2\left(xy+yz+zx\right)-2\ge0\Leftrightarrow\left(x+y+z\right)^2\ge0\) (luôn đúng).

Vậy ta có đpcm

Bình luận (1)
LD
12 tháng 4 2021 lúc 21:48

mình xí câu 45,47,51 :>

45. a) Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{1}{a}+\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{4}{2b}\ge\dfrac{\left(1+2\right)^2}{a+2b}=\dfrac{9}{a+2b}\left(đpcm\right)\)

Đẳng thức xảy ra <=> a=b

b) Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{\left(1+1+1\right)^2}{a+b+b}=\dfrac{9}{a+2b}\)(1)

\(\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{b+c+c}=\dfrac{9}{b+2c}\)(2)

\(\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{a}\ge\dfrac{\left(1+1+1\right)^2}{c+a+a}=\dfrac{9}{c+2a}\)(3)

Cộng (1),(2),(3) theo vế ta có đpcm

Đẳng thức xảy ra <=> a=b=c

Bình luận (0)
LD
12 tháng 4 2021 lúc 21:50

47. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{\left(a+b\right)^2}{c}+\dfrac{\left(b+c\right)^2}{a}+\dfrac{\left(c+a\right)^2}{b}\ge\dfrac{\left(a+b+b+c+c+a\right)^2}{a+b+c}=\dfrac{\left[2\left(a+b+c\right)\right]^2}{a+b+c}=\dfrac{4\left(a+b+c\right)^2}{a+b+c}=4\left(a+b+c\right)\)(đpcm)

Đẳng thức xảy ra <=> a=b=c

Bình luận (0)
H24
Xem chi tiết
H24
22 tháng 11 2021 lúc 19:07

undefined

Bình luận (0)
RH
22 tháng 11 2021 lúc 19:09

Số học sinh lớp 3B là:

36 + 4 = 40 (học sinh)

Cả 2 lớp có:

36 + 40 = 76 (học sinh)

Bình luận (0)
H24
22 tháng 11 2021 lúc 19:10

Số học sinh lớp 3B là:

       36 + 4 = 40 (học sinh)

Số học sinh của cả 2 lớp là:

       36 + 40 = 76 (học sinh)

                   Đ/S: 76 học sinh 

Bình luận (0)
HN
Xem chi tiết
H24
17 tháng 3 2021 lúc 16:25

Chào em, em tham khảo nhé!

Passage 5:

1. lie

2. discovered

3. across

4. established

5. for

6. estimated

Passage 6:

1. what

2. smoking

3. listening

4. sign

5. while

6. quit

7. laying

8. would

Chúc em học tốt và có những trải nghiệm tuyệt vời tại hoc24.vn!

Bình luận (0)
MV
Xem chi tiết
DL
6 tháng 3 2022 lúc 19:41

1. Định nghĩa hai tam giác bằng nhau

Các trường hợp bằng nhau của tam giác vuông hay, chi tiết

Hai tam giác bằng nhau là hai tam giác có các cạnh tương ứng bằng nhau, các góc tương ứng bằng nhau.

Để kí hiệu sự bằng nhau của tam giác ABC và tam giác A’B’C’ ta viết :

Các trường hợp bằng nhau của tam giác vuông hay, chi tiết

2. Các trường hợp bằng nhau của tam giác vuông

• Hai cạnh góc vuông

Các trường hợp bằng nhau của tam giác vuông hay, chi tiết

Nếu hai cạnh góc vuông của tam giác vuông này lần lượt bằng hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau (cạnh – góc – cạnh )

• Cạnh góc vuông và góc nhọn kề cạnh đó

Các trường hợp bằng nhau của tam giác vuông hay, chi tiết

Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác vuông đó bằng nhau ( góc – cạnh – góc )

• Cạnh huyền – góc nhọn

Các trường hợp bằng nhau của tam giác vuông hay, chi tiết

Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau ( góc – cạnh – góc)

• Cạnh huyền – cạnh góc vuông

Các trường hợp bằng nhau của tam giác vuông hay, chi tiết

Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này bằng cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

1. Định nghĩa hai tam giác bằng nhau

Các trường hợp bằng nhau của hai tam giác hay, chi tiết

Hai tam giác bằng nhau là hai tam giác có các cạnh tương ứng bằng nhau, các góc tương ứng bằng nhau.

Để kí hiệu sự bằng nhau của tam giác ABC và tam giác A’B’C’ ta viết : Các trường hợp bằng nhau của hai tam giác hay, chi tiết

2. Các trường hợp bằng nhau của tam giác

a. Trường hợp bằng nhau thứ nhất của tam giác cạnh – cạnh – cạnh (c.c.c)

Các trường hợp bằng nhau của hai tam giác hay, chi tiết

Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.

Xét Các trường hợp bằng nhau của hai tam giác hay, chi tiết có:

AB = A’B’

AC = A’C’

BC = B’C’

thì Các trường hợp bằng nhau của hai tam giác hay, chi tiết

b. Trường hợp bằng nhau thứ hai của tam giác: cạnh – góc – cạnh (c.g.c) 

b. Trường hợp bằng nhau thứ hai của tam giác: cạnh – góc – cạnh (c.g.c)

Các trường hợp bằng nhau của hai tam giác hay, chi tiết

Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau

Các trường hợp bằng nhau của hai tam giác hay, chi tiết

c. Trường hợp bằng nhau thứ ba của hai tam giác: góc – cạnh – góc

Các trường hợp bằng nhau của hai tam giác hay, chi tiết

Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau.

Các trường hợp bằng nhau của hai tam giác hay, chi tiết

tik cho mình nha mình đc câu1 nè

Bình luận (0)
2N
Xem chi tiết
AH
13 tháng 12 2021 lúc 19:58

Câu 88: D (đáp án đã giải chi tiết trong post khác)

Câu 89: B

Câu 90: C. \(8.\frac{30}{40}=6\)

Câu 91: D

Bình luận (0)
DH
Xem chi tiết
NH
22 tháng 9 2023 lúc 16:14

a, \(\dfrac{2^3-x^3}{x\left(x^2+2x+4\right)}\) = \(\dfrac{\left(2-x\right)\left(x^2+2x+4\right)}{x\left(x^2+2x+4\right)}\) = \(\dfrac{2-x}{x}\)=\(\dfrac{x-2}{-x}\)(đpcm)

Bình luận (0)
NH
22 tháng 9 2023 lúc 16:17

b, \(\dfrac{-3x\left(x-y\right)}{y^2-x^2}\) (\(x\) \(\ne\) \(\pm\) y)

\(\dfrac{-3x\left(x-y\right)}{\left(y-x\right)\left(y+x\right)}\)

\(\dfrac{3x\left(y-x\right)}{\left(y-x\right)\left(y+x\right)}\)

\(\dfrac{3x}{x+y}\) (đpcm)

Bình luận (0)
NH
22 tháng 9 2023 lúc 16:20

c, \(\dfrac{3a\left(x+y\right)^2}{9a^2\left(x+y\right)}\) (đk a \(\ne\)0; \(x\) \(\ne\) - y)

   = \(\dfrac{3.a.\left(x+y\right)\left(x+y\right)}{3.3.a.a.\left(x+y\right)}\)

   =    \(\dfrac{x+y}{3a}\) (đpcm)

Bình luận (0)