giải phương trình
x^4-12x-5=0
Giải hệ phương trình
X + y = 1
2x - y = 8
\(\left\{{}\begin{matrix}x+y=1\\2x-y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+2y=2\\2x-y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\\left(2x-2x\right)+\left(2y+y\right)=2-8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\3y=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=1\\y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)
Vậy hệ pt có nghiệm duy nhất \(\left(x;y\right)=\left(3;-2\right)\)
giải phương trình
x-4\(\sqrt{x-2}\)+1=0
\(x-4\sqrt{x-2}+1=0\)(Đk x>2)
⇔\(x-2-4\sqrt{x-2}+4-1=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-2\right)^2-1=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-3\right)\left(\sqrt{x-2}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}-3=0\\\sqrt{x-2}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=3\\\sqrt{x-2}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=9\\x-2=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=11\\x=3\end{matrix}\right.\)(thảo đk)
Vậy\(\left[{}\begin{matrix}x=11\\x=3\end{matrix}\right.\)là nghiệm của pt
ĐKXĐ: x≥2
x+1=\(4\sqrt{x-2}\) bình phương 2 vế ta đc:\(\left(x+1\right)^2=16\cdot\left(x-2\right)< =>x^2+2x+1=16x-32< =>x^2-14x+33=0\)
giải phương trình này ta đc:x1=11(nhận); x2=3(nhận)
vậy phương trình có 2 nghiệm: x1=11;x2=3
giải phương trình
x\(^3\) - 9x\(^2\) + 19x-11=0
\(\Leftrightarrow x^3-x^2-8x^2+8x+11x-11=0\)
\(\Leftrightarrow x^2\left(x-1\right)-8x\left(x-1\right)+11\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-8x+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2-8x+11=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4-\sqrt{5}\\x=4+\sqrt{5}\end{matrix}\right.\)
giải hệ phương trình
x - y = m
2x + y = 4
Giải bất phương trình
x^2>= 1
x^2 < 1
x^2+3x>=0
x^2+3x+3 >=0
a, \(x^2\)≥1
\(\Leftrightarrow\) x>1
b, \(x^2\)<1
\(\Rightarrow\) x∈∅
c, \(x^2\)+3x ≥ 0
\(\Leftrightarrow\) \(x^2\)≥-3x
\(\Leftrightarrow\) x≥-3
d, \(x^2\)+3x+3≥0
\(\Leftrightarrow\) \(\left(x+\dfrac{3}{2}\right)^2\)+\(\dfrac{3}{4}\)≥0+\(\dfrac{3}{4}\)
\(\Leftrightarrow\) \(x^2\)+\(\dfrac{3}{2}^2\)≥0
\(\Leftrightarrow\)\(x^2\)≥\(\dfrac{9}{4}\)
\(\Leftrightarrow\)x≥\(\dfrac{3}{2}\)
giải phương trình
x+1/2021 +x+2/2020=x+3/2019+x+4/2018
\(\dfrac{x+1}{2021}+\dfrac{x+2}{2020}=\dfrac{x+3}{2019}+\dfrac{x+4}{2018}\)
=>\(\dfrac{x+1}{2021}+1+\dfrac{x+2}{2020}+1=\dfrac{x+3}{2019}+1+\dfrac{x+4}{2018}+1\)
=>\(\dfrac{x+2022}{2021}+\dfrac{x+2022}{2020}=\dfrac{x+2022}{2019}+\dfrac{x+2022}{2018}\)
=> (x+2022)(\(\dfrac{1}{2021}+\dfrac{1}{2020}-\dfrac{1}{2019}-\dfrac{1}{2018}\))=0
=>x+2022=0
=> x=-2022
giải phương trình :
x4-12x -5 =0
Ta có : x4 - 12x - 5 = 0
\(\Leftrightarrow\)x4 - 2x3 - x2 + 2x3 - 4x2 - 2x + 5x2 - 10x - 5 = 0
\(\Leftrightarrow\)x2 ( x2 - 2x - 1 ) + 2x ( x2 - 2x - 1 ) + 5 ( x2 - 2x - 1 ) = 0
\(\Leftrightarrow\)( x2 + 2x + 5 ) ( x2 - 2x - 1 ) = 0
vì x2 + 2x + 5 > 0 nên x2 - 2x - 1 = 0 \(\Rightarrow x=1\pm\sqrt{2}\)
x4−12x−5=0x
⇒x4−12x=5
⇒x(x3−12)=5
⇒x;x3−12∈Ư(5)
Bạn tự xét các trường hợp nhé!
#Châu's ngốc
giải pt mà, chắc j x đã là số nguyên
Giải phương trình:
x^4+7x^2-12x+5=0
\(x^4+7x^2-12x+5=0\)
\(A=\left(x^4+7x^2-12x+5\right)=\left(x^4-2x^2+1\right)+\left(9x^2-4.3x+4\right)=\left(x^2-1\right)^2+\left(3x-2\right)^2=0\)\(A=\left(x^2-1\right)^2+\left(3x-2\right)^2>0\) => vô nghiệm
giải phương trinh :
5-\sqrt{9x^2+4-12x} = 0