Những câu hỏi liên quan
TH
Xem chi tiết
TP
15 tháng 10 2015 lúc 12:56

\(A=\frac{x}{1-x}+\frac{5}{x}=\frac{x}{1-x}+\frac{5\left(1-x\right)}{x}+5\ge2\sqrt{\frac{x}{1-x}.\frac{5\left(1-x\right)}{x}}+5=2\sqrt{5}+5\)(BĐT Cô-si) 

Xảy ra đẳng thức khi và chỉ khi \(5\left(1-x\right)^2=x^2\Leftrightarrow5x^2-10x+5=x^2\Leftrightarrow4x^2-10x+5=0\Leftrightarrow x=\frac{5+\sqrt{5}}{4}\)(loại) hoặc \(x=\frac{5-\sqrt{5}}{4}\)(thỏa mãn) .

Vậy min \(A=2\sqrt{5}+5\)  khi và chỉ khi \(x=\frac{5-\sqrt{5}}{4}\)

Bình luận (0)
DV
Xem chi tiết
NL
27 tháng 9 2019 lúc 18:19

Không cho dữ kiện nào liên quan đến y thì làm sao mà tìm bạn

Bình luận (0)
DD
Xem chi tiết
BN
Xem chi tiết
NL
14 tháng 3 2019 lúc 23:01

Giá trị nhỏ nhất của biểu thức trên không tồn tại

Với giá trị \(x\) càng gần số 1 về bên trái thì A là 1 số âm có giá trị tuyệt đối càng lớn, A càng nhỏ

Bạn cứ cho x những giá trị như 0.999999 hay 0.999999999 là thấy

Bình luận (1)
ND
Xem chi tiết
AN
16 tháng 12 2016 lúc 10:01

Ta có

\(A=x^2-\frac{x}{3}+\frac{1}{27x}+2016\)

\(=\left(x^2-\frac{2x}{3}+\frac{1}{9}\right)+\left(\frac{x}{3}-\frac{2}{9}+\frac{1}{27x}\right)+2016-\frac{1}{9}+\frac{2}{9}\)

\(=\left(x-\frac{1}{3}\right)^2+\left(\frac{\sqrt{x}}{\sqrt{3}}-\frac{1}{3\sqrt{3x}}\right)^2+\frac{18145}{9}\)

\(\ge\frac{18145}{9}\)

Dấu  = xảy ra khi \(x=\frac{1}{3}\)

PS: Lần sau đừng chép đề thiếu nữa nha bạn :(

Bình luận (0)
ND
15 tháng 12 2016 lúc 20:38

x>0 nhe

Bình luận (0)
TN
15 tháng 12 2016 lúc 22:16

\(min_A=\frac{1469648}{729}\Leftrightarrow x=\frac{4}{27}\)

Bình luận (0)
NM
Xem chi tiết
CH
27 tháng 6 2016 lúc 11:06

Ta dùng bđt Cô si nhé :) 

Do x > 1 nên x + 1 > 0. Từ đó ta có: 

\(A=4\left(x+1\right)+\frac{25}{x+1}-4\)

Áp dụng bđt Cosi ta có : \(4\left(x+1\right)+\frac{25}{x+1}\ge2\sqrt{\frac{4\left(x+1\right).25}{\left(x+1\right)}}=20\Rightarrow A\ge20-4=16\)

Vậy GTNN của A là 16, khi x = 1,5.

Bình luận (0)
NS
Xem chi tiết
NL
8 tháng 8 2020 lúc 10:15

Đặt \(\left\{{}\begin{matrix}x-1=a>0\\y-1=b>0\end{matrix}\right.\)

\(P=\frac{\left(a+1\right)^2}{b}+\frac{\left(b+1\right)^2}{a}\ge\frac{\left(a+b+2\right)^2}{a+b}=\frac{\left(a+b\right)^2+4\left(a+b\right)+4}{a+b}\)

\(P\ge a+b+\frac{4}{a+b}+4\ge2\sqrt{\frac{4\left(a+b\right)}{a+b}}+4=8\)

\(P_{min}=8\) khi \(a=b=1\) hay \(x=y=2\)

Bình luận (0)
LH
Xem chi tiết
ND
Xem chi tiết
EC
1 tháng 1 2020 lúc 21:58

Ta có: M = \(\frac{x^4+x^2+5}{x^4+2x^2+1}\)

M = \(\frac{\left(x^4+2x^2+1\right)-\left(x^2+1\right)+5}{\left(x^2+1\right)^2}\)

M = \(1-\frac{1}{x^2+1}+5\cdot\frac{1}{\left(x^2+1\right)^2}\)

Đặt \(\frac{1}{x^2+1}=y\)

Khi đó, ta có: M = \(1-y+5y^2=5\left(y^2-\frac{1}{5}y+\frac{1}{100}\right)+\frac{19}{20}=5\left(y-\frac{1}{10}\right)^2+\frac{19}{20}\ge\frac{19}{20}\forall y\)

Dấu "=" xảy ra <=> y - 1/10 = 0 <=> y = 1/10 <=> \(\frac{1}{x^2+1}=\frac{1}{10}\) <=> x2 + 1 = 10

<=> x2 = 9 <=> \(x=\pm3\)

Vậy MinM = 19/20 khi x = 3 hoặc x = -3

Bình luận (0)
 Khách vãng lai đã xóa
H24
2 tháng 1 2020 lúc 10:20

Dạng này bạn chỉ cần để ý: \(x^4+2x^2+1=\left(x^2+1\right)^2\) là bình phương của một biểu thức.

Rồi đặt \(x^2+1=y\Rightarrow x^2=y-1\) rồi thay vào M là được!

Bình luận (0)
 Khách vãng lai đã xóa