Violympic toán 9

NS

1) Cho cac so thuc duong x,y>1 . Tim GTNN cua bieu thuc : \(P=\frac{x^2}{y-1}+\frac{y^2}{x-1}\)

NL
8 tháng 8 2020 lúc 10:15

Đặt \(\left\{{}\begin{matrix}x-1=a>0\\y-1=b>0\end{matrix}\right.\)

\(P=\frac{\left(a+1\right)^2}{b}+\frac{\left(b+1\right)^2}{a}\ge\frac{\left(a+b+2\right)^2}{a+b}=\frac{\left(a+b\right)^2+4\left(a+b\right)+4}{a+b}\)

\(P\ge a+b+\frac{4}{a+b}+4\ge2\sqrt{\frac{4\left(a+b\right)}{a+b}}+4=8\)

\(P_{min}=8\) khi \(a=b=1\) hay \(x=y=2\)

Bình luận (0)

Các câu hỏi tương tự
NS
Xem chi tiết
VD
Xem chi tiết
NT
Xem chi tiết
NS
Xem chi tiết
AT
Xem chi tiết
VD
Xem chi tiết
TK
Xem chi tiết
PB
Xem chi tiết
TK
Xem chi tiết