Tìm số nguyên n biết :
( n2 + 25 ) chia hết cho ( n + 2 )
Tìm các số nguyên n sao cho:
a) n2 – 10 chia hết cho n – 1
b) n2 + 4n + 13 chia hết cho n + 2
Tìm số nguyên n để:
a) n3 – 2 chia hết cho n – 2
b) n3 – 3n2 – 3n – 1 chia hết cho n2 + n + 1
c) 5n – 2n chia hết cho 63
giúp vs ạ...
a: \(n^3-2⋮n-2\)
=>\(n^3-8+6⋮n-2\)
=>\(6⋮n-2\)
=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
b: \(n^3-3n^2-3n-1⋮n^2+n+1\)
=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
=>\(3⋮n^2+n+1\)
=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)
mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)
nên \(n^2+n+1\in\left\{1;3\right\}\)
=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)
Tìm số nguyên n
n2 + 2n +1 chia hết cho n +2
Bài 6. Tìm số nguyên n biết:
a) – 13 là bội của n – 2
b) 2n - 1 là ước của 3n + 2
c) n2 + 2n - 7 chia hết cho n + 2
d) n2+3n−5 là bội của n−2.
a) – 13 là bội của n – 2
=>n−2∈Ư (−13)={1; −1;13; −13}
=> n∈{3;1;15; −11}
Vậy n∈{3;1;15; −11}.
b) 3n + 2 ⋮2n−1 => 2(3n + 2) ⋮2n−1 => 6n + 4 ⋮2n−1 (1)
Mà 2n−1⋮2n−1 => 3(2n−1) ⋮2n−1 => 6n – 3 ⋮2n−1 (2)
Từ (1) và (2) => (6n + 4) – (6n – 3) ⋮2n−1
=> 7 ⋮2n−1
=> 2n−1 ∈Ư(7)={1; −1;7; −7}
=>2n ∈{2;0;8; −6}
=>n ∈{1;0;4; −3}
Vậy n ∈{1;0;4; −3}.
c) n2 + 2n – 7 ⋮n+2
=>n(n+2)−7⋮n+2
=>7⋮n+2=>n+2∈{1; −1;7; −7}
=>n∈{−1; −3;5; −9}
Vậy n∈{−1; −3;5; −9}
d) n2+3n−5 là bội của n−2
=> n2+3n−5 ⋮ n−2
=> n2−2n+5n−10+5 ⋮ n−2
=> n(n - 2) + 5(n - 2) + 5 ⋮ n−2
=> 5 ⋮ n−2=>n−2∈{1; −1;5; −5}=>n∈{3; 1;7; −3}
Vậy n∈{3; 1;7; −3}.
Tìm số nguyên n sao cho n2+9n+15 chia hết cho n+11
\(\Leftrightarrow n+11\in\left\{1;-1;37;-37\right\}\)
hay \(n\in\left\{-10;-12;26;-48\right\}\)
\(\Rightarrow n^2+11n-2n-22+37⋮n+11\\ \Rightarrow n\left(n+11\right)-2\left(n+11\right)+37⋮n+11\\ \Rightarrow n+11\inƯ\left(37\right)=\left\{-37;-1;1;37\right\}\\ \Rightarrow n\in\left\{-48;-12;-10;26\right\}\)
Tìm số nguyên n để : (n2+5) chia hết cho ( n-1 )
n^2+5=n.(n-1)+n+5
=n.(n-1)+n-1+6 chia hết cho n-1
=. 6 chia hết cho n-1
=> n-1 thuộc U(6)={1,2,3,6}
=> n={2,3,4,6}
nếu bn chưa học âm thì chỉ từng đó, mk nghỉ bn 5 lên 6 chưa học đến âm nên ko giải
Tìm số nguyên n biết
1) 3n+7 chia hết cho 2 n+1
2) n²+25 chia hết cho n+2
3) 3n²+5 chia hết cho n-1
Ai là đúng nhất thì mình sẽ tịck cho
1) Để \(3n+7⋮2n+1\) \(\Leftrightarrow\)\(2.\left(3n+7\right)⋮2n+1\)
- Ta có: \(2.\left(3n+7\right)=6n+14=\left(6n+3\right)+11=3.\left(2n+1\right)+11\)
- Để \(2.\left(3n+7\right)⋮2n+1\)\(\Rightarrow\)\(3.\left(2n+1\right)+11⋮2n+1\)mà \(3.\left(2n+1\right)⋮2n+1\)
\(\Rightarrow\)\(11⋮2n+1\)\(\Rightarrow\)\(2n+1\inƯ\left(11\right)\in\left\{\pm1;\pm11\right\}\)
- Ta có bảng giá trị:
\(2n+1\) | \(-1\) | \(1\) | \(-11\) | \(11\) |
\(n\) | \(-1\) | \(0\) | \(-6\) | \(5\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(n\in\left\{-6,-1,0,5\right\}\)
2) Ta có: \(n^2+25=\left(n^2-4\right)+29=\left(n+2\right).\left(n-2\right)+29\)
- Để \(n^2+25⋮n+2\)\(\Rightarrow\)\(\left(n+2\right).\left(n-2\right)+29⋮n+2\)mà \(\left(n+2\right).\left(n-2\right)⋮n+2\)
\(\Rightarrow\)\(29⋮n+2\)\(\Rightarrow n+2\inƯ\left(29\right)\in\left\{\pm1;\pm29\right\}\)
- Ta có bảng giá trị:
\(n+2\) | \(-1\) | \(1\) | \(-29\) | \(29\) |
\(n\) | \(-3\) | \(-1\) | \(-31\) | \(27\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(n\in\left\{-31,-3,-1,27\right\}\)
3) Ta có: \(3n^2+5=\left(3n^2-3\right)+8=3.\left(n+1\right).\left(n-1\right)+8\)
- Để \(3n^2+5⋮n-1\)\(\Rightarrow\)\(3.\left(n+1\right).\left(n-1\right)+8⋮n-1\)mà \(3.\left(n+1\right).\left(n-1\right)⋮n-1\)
\(\Rightarrow\)\(8⋮n-1\)\(\Rightarrow n-1\inƯ\left(8\right)\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
- Ta có bảng giá trị:
\(n-1\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-4\) | \(4\) | \(-8\) | \(8\) |
\(n\) | \(0\) | \(2\) | \(-1\) | \(3\) | \(-3\) | \(5\) | \(-7\) | \(9\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(n\in\left\{-7,-3,-1,0,2,3,5,9\right\}\)
Tìm số nguyên n biết
1) n²+n+17 chia hết cho n+1
2) 9-n chia hết cho n-3
3) 3n +7 chia hết cho 2n+1
4) n² +25 chia hết cho n+2
5) 3n²+5 chia hết cho n-1
Làm hộ mình
3)
3n+7\(⋮2n+1\)
vì \(3n+7⋮3n+7\)
=>\(2\left(3n+7\right)⋮3n+7\)
=> 6n+7\(⋮3n+7\)
vì \(2n+1⋮2n+1\)
\(\Rightarrow3\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+1⋮2n+1\)
\(\Rightarrow\left(6n+7\right)-\left(6n+1\right)⋮2n+1\)
\(\Rightarrow6⋮2n+1\)
đến đoạn này em chỉ cần lập bảng tìm n nữa là xong nhé
tìm n để 3n-2 chia hết cho n+4
tìm số nguyên x biết
3x+12=2x-4
14-3x=-x+4
2(x-2)+7=x-25
|a+3|=-3
tìm số nguyên n để
a, n+5 chia hết cho n-1
b,2n-4 chia hết cho n+2
c, 6n+4 chia hết cho 2n+1
d,3-2n chia hết cho n+1
3x+12=2x-4
3x-2x=-4-12
1x=-16
x=-16:1 =>x=-16
14-3x=x+4
-3x-x=4-14
-4x=-10
x=-10:-4 =>x=-10/-4
2(x-2)+7=x-25
2x-4+7=x-25
2x-x=-25+4-7
2x=-28
x=-28;2 =>x=-14
|a+3|=-3
a+3=-3 hoặc a+3=3
a=-6 hoặc a=0
tìm x thì dễ rồi , mình làm tìm n nhá
a, ta có n+5=n-1+6
mà n-1 chia hết cho n-1
suy ra để n là số nguyên thì 6 chia hết cho n
suy ra n là ước của 6 ={
±1;
|
Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.
Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>(n+8)(n-8) chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc Ư(65)
=>n^2+1 thuộc {1;5;13;65}
=>n^2 thuộc {0;4;12;64}
mà n là số tự nhiên
nên n thuộc {0;2;8}
Thử lại, ta sẽ thấy n=8 không thỏa mãn
=>\(n\in\left\{0;2\right\}\)