so sánh \(\frac{a+m}{b+m}va\frac{a}{b}\left(a;b;m€N\cdot\right)\)
cho\(\frac{a}{b}\)<1 hãy so sánh\(\frac{a}{b}va\frac{a+m}{b+m}< m>0>\)
Ta có:
\(1-\frac{-2015}{-2016}=1-\frac{2015}{2016}=\frac{1}{2016}\)
\(1-\frac{-2016}{-2017}=1-\frac{2016}{2017}=\frac{1}{2017}\)
Vì \(\frac{1}{2016}>\frac{1}{2017}\Rightarrow\frac{-2015}{-2016}< \frac{-2016}{-2017}\)
Đây là cách so sánh phần bù, bạn có thể lên mạng tham khảo thêm nhé :)
M=\(\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1},\)voi a>0 va a#1
a)Rút gọn biểu thức M
b)so sánh giá trị của m với 1
Giúp mk với mk giúp lại cho
a ĐK \(a>0\)và \(a\ne1\)
. \(M=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a}-1}\right).\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)
\(=\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{\sqrt{a}-1}{\sqrt{a}}\)
b. Ta có \(M-1=\frac{\sqrt{a}-1}{\sqrt{a}}-1=\frac{\sqrt{a}-1-\sqrt{a}}{\sqrt{a}}=\frac{-1}{\sqrt{a}}< 0\)
Vậy \(M< 1\)
Tim ti so cua A va B ,biet rang
A=\(\frac{1}{1+1981}\)\(+\frac{1}{2+1982}+...+\frac{1}{n\left(1980+n\right)}+...+\frac{1}{25.2005}\)
B=\(\frac{1}{1.26}\)+\(\frac{1}{2.27}+...+\frac{1}{m\left(25+m\right)}+...+\frac{1}{1980+2005}\)
trong do Aco 25 so hang va B co 1980 so hang
Cho biểu thức M=\(\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)với a > 0 và a khác 1
a) Rút gọn biểu thức M
b) So sánh giá trị của M với 1
a,Với \(a>0;a\ne1\)
\(M=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)
\(=\left(\frac{\sqrt{a}-1+a-\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)^2}\right).\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{a-1}{a+\sqrt{a}}\)
b, Ta có : \(1=\frac{a+\sqrt{a}}{a+\sqrt{a}}\)mà \(a-1=\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)\)
\(a+\sqrt{a}=\sqrt{a}\left(\sqrt{a}+1\right)\)vì \(\sqrt{a}-1< \sqrt{a}\)
Vậy \(\frac{a-1}{a+\sqrt{a}}< 1\)hay \(M< 1\)
Bài 1 So sánh
\(\left(\frac{-1}{16}\right)^{100}\)va \(\left(\frac{-1}{2}\right)^{500}\)
Bài 2 So sánh
A =\(\frac{100^{100}+1}{100^{99}+1}\)Va B =\(\frac{100^{69}+1}{100^{68}+1}\)
Các p ơi giúp mink vs
Bài 1: \(\left(\frac{-1}{16}\right)^{100}=\frac{1}{\left(2^4\right)^{100}}=\frac{1}{2^{400}}>\frac{1}{2^{500}}=\left(\frac{-1}{2}\right)^{500}.\)
Bài 2: \(100^{99}+1>100^{68}+1\Rightarrow\frac{1}{100^{99}+1}< \frac{1}{100^{68}+1}\Rightarrow\frac{-99}{100^{99}+1}>\frac{-99}{100^{68}+1}\)
\(\Rightarrow100+\frac{-99}{100^{99}+1}>100+\frac{-99}{100^{68}+1}\Rightarrow\frac{100^{100}+1}{100^{99}+1}>\frac{100^{69}+1}{100^{68}+1}\)
cho cc số a;b; thỏa mãn a+b+c khac 0 va\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) khi đó giá trị của M=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\)?
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
\(\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)
\(\Leftrightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
\(\Rightarrow a=b=c\)
\(\Rightarrow\frac{a}{b}=1;\frac{b}{c}=1;\frac{c}{a}=1\)
\(\Rightarrow M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2.2.2=8\)
So sánh M = \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\) với 1 ta được M...1
Đáp số là M > 1. Bạn cần cách giải không ?
Co minh biet ket qua roi ban HiHI
mk chi cac bạn tuyet chieu;
nhung bai toan dang nay mk thuong lay so cu the nhu 1;2;3 .... thay vao se doan dc kq vi violympic thoi gian thi co hạn
cac ban co dong y k
;
Cho a,b,m thuộc N*
So sánh \(\frac{a+m}{b+m}\) với \(\frac{a}{b}\)
TH1 : a<b
\(\Rightarrow am< bm\)
\(\Rightarrow ab+am< ab+bm\Rightarrow a\left(b+m\right)< b\left(a+m\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\)
TH2 : a=b
\(\Rightarrow am=bm\)
\(\Rightarrow ab+am=ab+bm\Rightarrow a\left(b+m\right)=b\left(a+m\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a+m}{b+m}\)
TH1 : a>b
\(\Rightarrow am>bm\)
\(\Rightarrow ab+am>ab+bm\Rightarrow a\left(b+m\right)>b\left(a+m\right)\)
\(\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\)
Vậy ... ( có 3 trường hợp )
Cho a,b,m thuộc N*
So sánh \(\frac{a+m}{b+m}\) với \(\frac{a}{b}\)