Những câu hỏi liên quan
H24
Xem chi tiết
ND
Xem chi tiết

Vì p là số nguyên tố lớp hơn a nên p là số lẻ.

\(\Rightarrow\left(p+2015\right)\left(p+2017\right)⋮8\text{ }\)     (1)

Vì p là số nguyên tố lớn hơn 3 nên p có dạng \(3k+1\) và \(3k+2\) \(\left(k\inℕ^∗\right)\)

+) Với \(p=3k+1\)

 \(\Rightarrow\left(p+2015\right)\left(p+2017\right)=\left(3k+2016\right)\left(3k+2018\right)⋮3\) (Vì \(3k⋮3\text{ };\text{ }2016⋮3\) ở số đầu tiên)     (2)

+) Với \(p=3k+2\)

\(\Rightarrow\left(p+2015\right)\left(p+2017\right)=\left(3k+2017\right)\left(3k+2019\right)⋮3\) (Vì \(3k⋮3\text{ };\text{ }2019⋮3\) nên số thứ hai chia hết cho 3   (3)

Từ (1) ; (2) và (3), suy ra \(\left(p+2015\right)\left(p+2017\right)⋮24\) (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
NP
Xem chi tiết
LA
Xem chi tiết
DL
11 tháng 6 2017 lúc 18:39

Vì p nguyên tố > 3 

=> p \(̸⋮\)3

=> p2 chia 3 dư 1 [vì số cp chia 3 dư 0,1]

Lại có: 2017 chia 3 dư 1

=> 2017 - p2 \(⋮3\)

Tương tự như trên, ta có:

p nguyên tố > 3 

=> p lẻ và p không chia hết cho 8

=> p2 chia 8 dư 1 [vì số cp chia 8 dư 0,1,4 và p lẻ]

Lại có: 2017 chia 8 dư 1

=> 2017 - p2 \(⋮\)8

Mà UCLN của 3 và 8 là 1 => 2017-p2 \(⋮\)24

Bình luận (0)
HP
11 tháng 6 2017 lúc 21:48

câu 2 chuyên HN 2017-2018 

Bình luận (0)
H24
15 tháng 3 2018 lúc 22:35

Vì p nguyên tố > 3 
=> p ̸⋮ 3
=> p2
 chia 3 dư 1 [vì số cp chia 3 dư 0,1]
Lại có: 2017 chia 3 dư 1
=> 2017 - p2 ⋮3
Tương tự như trên, ta có:
p nguyên tố > 3 
=> p lẻ và p không chia hết cho 8
=> p2
 chia 8 dư 1 [vì số cp chia 8 dư 0,1,4 và p lẻ]
Lại có: 2017 chia 8 dư 1
=> 2017 - p2 ⋮ 8
Mà UCLN của 3 và 8 là 1 => 2017-p2 ⋮ 24

:3

Bình luận (0)
AJ
Xem chi tiết
NL
31 tháng 5 2020 lúc 13:46

Phản ví dụ:

\(p=5\Rightarrow2017-5^3=1892\) ko chia hết cho 24

Do đó đề bài ko chính xác

Bình luận (0)
SF
31 tháng 5 2020 lúc 14:03

đề đúng phải là 2017-p^2 chia hết cho 24 nha bạn

Bình luận (0)
DD
Xem chi tiết
PH
27 tháng 7 2018 lúc 17:53

6^4 + 324 = 1620

1620 chia hết cho 20 và 81 nên 6^4 +324 chia hết cho 20 và 81.

Bài này dễ vậy còn gì nữa.

Bình luận (0)
DD
27 tháng 7 2018 lúc 17:57

bạn ơi nếu thế thì mình ko cần hỏi đâu

Bình luận (0)
ST
27 tháng 7 2018 lúc 17:59

\(6^4+324=2^4.3^4+2^2.9^2=9^2\left(2^4+2^2\right)=81.20\)

Bình luận (0)
DT
Xem chi tiết
DN
7 tháng 7 2017 lúc 20:52

Vì p là số nguyên tố lớn hơn 3 nên p lẻ

=> p+2015 và p+2017 là 2 số chẵn liên tiếp

=> (p+2015)(p+2017) chia hết cho 8(1)

mặt khác p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 và 3k+2

Nếu p=3k+1 thì (p+2015)(p+2017)=(3k+1+2015)(3k+1+2017)=3(k+672)(3k+2018) chia hết cho 3=>(p+2015)(o+2017) chia hết cho 3(2)

Nếu p=3k+2 chứng minh tương tự ta đc (p+2015)(p+2017) chia hết cho 3(3)

Từ (1),(2),(3) => (p+20150(p+2017) chia hết cho 24

=> ĐPCM

Bình luận (0)
NA
19 tháng 3 2018 lúc 12:44

tìm x sao cho 2 + 2x+1 + 2x+2 + 2x+3  + ... +2x+2015 = 22017 - 2

giải giúp mình với

Bình luận (0)
BT
Xem chi tiết
OP
23 tháng 7 2016 lúc 21:20

\(19^{120}-1\)

\(=\left(18+1\right)^{120}-1\)

\(=\left(\left(18+1\right)^{60}\right)^2-1\)

\(=\left(\left(18+1\right)^2+1\right)\left(\left(18+1\right)^2-1\right)\)

\(=\left(\left(180+1\right)^2+1\right)\left(180+1\right)\left(18-1\right)\)

Ta thấy cả 3 tích đều có 18 nên => Tổng của chúng chia hết cho 18 Hay \(19^{120}-1\)chia hết cho 18

Bình luận (0)
TN
Xem chi tiết