Những câu hỏi liên quan
H24
Xem chi tiết
VC
Xem chi tiết
H24
21 tháng 3 2021 lúc 9:56

Ta có:

$\dfrac{1}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{1}{abc+bc+b}$

$=\dfrac{abc}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{1}{1+bc+b}$ (do $abc=1$)

$=\dfrac{abc}{a(bc+b+1)}+\dfrac{b}{bc+b+1}+\dfrac{1}{1+bc+b}$

$=\dfrac{bc}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{1}{1+bc+b}$

$=\dfrac{bc+b+1}{bc+b+1}=1$

(đpcm)

Bình luận (0)
LD
Xem chi tiết
DT
Xem chi tiết
NA
21 tháng 7 2016 lúc 16:12

Có abc=1 nên 
1/(1+a+ab)=abc/(abc+a+ab) 
=abc/[a(1+b+bc)] 
=bc/(1+b+bc) 

1/(1+c+ac)=abc/(abc+c.abc+ac) 
=abc/[ca(1+b+bc)]=b/(1+b+bc) 

=>1/(1+a+ab) + 1/(1+b+bc)+ 1/(1+c+ac) 
=bc/(1+b+bc)+1/(1+b+bc)+b/(1+b+bc) 
=(1+b+bc)/(1+b+bc) 
=1 
=>1/(1+a+ab) + 1/(1+b+bc)+ 1/(1+c+ac)=1

ràu xong

Bình luận (0)
DT
22 tháng 7 2016 lúc 10:15

thanks bạn nhiều 

Bình luận (0)
VN
Xem chi tiết
NL
9 tháng 8 2021 lúc 15:58

Với mọi số thực dương a;b;c ta có BĐT:

\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

Tương tự, ta có:

\(VT\le\dfrac{ab}{ab\left(a^2+b^2\right)+ab}+\dfrac{bc}{bc\left(b^2+c^2\right)+bc}+\dfrac{ca}{ca\left(c^2+a^2\right)+ca}\)

\(VT\le\dfrac{1}{a^2+b^2+1}+\dfrac{1}{b^2+c^2+1}+\dfrac{1}{c^2+a^2+1}\)

Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)

\(VT\le\dfrac{1}{x^3+y^3+1}+\dfrac{1}{y^3+z^3+1}+\dfrac{1}{z^3+x^3+1}\)

Ta lại có: \(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)

\(\Rightarrow VT\le\dfrac{xyz}{xy\left(x+y\right)+xyz}+\dfrac{xyz}{yz\left(y+z\right)+xyz}+\dfrac{xyz}{zx\left(z+x\right)+xyz}=1\)

Bình luận (0)
VP
Xem chi tiết
NL
14 tháng 9 2021 lúc 21:58

\(\left\{{}\begin{matrix}ab+bc+ca=abc\\a+b+c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}abc-ab-bc-ca=0\\a+b+c-1=0\end{matrix}\right.\)

\(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(a-1\right)\left(bc-b-c+1\right)\)

\(=abc-ab-ac+a-bc+b+c-1\)

\(=\left(abc-ab-bc-ca\right)+\left(a+b+c-1\right)\)

\(=0+0=0\) (ddpcm)

Bình luận (0)
NM
14 tháng 9 2021 lúc 21:58

\(VT=\left(a-1\right)\left(b-1\right)\left(c-1\right)\\ =\left(ab-a-b+1\right)\left(c-1\right)\\ =abc-ab-ac+a-bc+b+c-1\\ =abc-\left(ab+bc+ca\right)+\left(a+b+c\right)-1\\ =abc-abc+1-1=0=VP\)

Bình luận (0)
H24
Xem chi tiết
VA
Xem chi tiết
PM
Xem chi tiết
LL
18 tháng 7 2018 lúc 22:39

Vì abc=1 nên:

\(\frac{1}{ab+a+1}+\frac{b}{bc+b+1}+\frac{1}{abc+bc+b}=\frac{1}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{a}{abc.a+abc+ab}=\frac{1}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{a}{a+1+ab}=1\) 

Chúc bạn học tốt.

Bình luận (0)