Những câu hỏi liên quan
SK
Xem chi tiết
HH
23 tháng 2 2021 lúc 14:29

1/ \(3-4\sin^2=4\cos^2x-1\Leftrightarrow4\left(\sin^2x+\cos^2x\right)-4=0\Leftrightarrow4.1-4=0\left(ld\right)\Rightarrow dpcm\)

2/ \(\cos^4x-\sin^4x=\left(\cos^2x+\sin^2x\right)\left(\cos^2x-\sin^2x\right)=\cos^2x-\left(1-\cos^2x\right)=2\cos^2x-1=\left(1-\sin^2x\right)-\sin^2x=1-2\sin^2x\)

3/ \(\sin^4x+\cos^4x=\left(\sin^2x+\cos^2x\right)^2-2\sin^2x.\cos^2x=1-2\sin^2x.\cos^2x\)

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 3 2018 lúc 14:28

Đáp án D

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 2 2018 lúc 3:25

Đáp án C

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 6 2018 lúc 15:13

Chọn đáp án C.

Bình luận (0)
H24
Xem chi tiết
NL
21 tháng 9 2021 lúc 9:36

1.

\(tan^2x-5tanx+6=0\)

\(\Rightarrow\left[{}\begin{matrix}tanx=2\\tanx=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(2\right)+k\pi\\x=arctan\left(3\right)+k\pi\end{matrix}\right.\)

2.

\(3cos^22x+4cos2x+1=0\)

\(\Rightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=-\dfrac{1}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\pi+k2\pi\\2x=\pm arccos\left(-\dfrac{1}{3}\right)+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pm\dfrac{1}{2}arccos\left(-\dfrac{1}{3}\right)+k\pi\end{matrix}\right.\)

Bình luận (0)
PT
Xem chi tiết
NL
Xem chi tiết
NL
18 tháng 10 2020 lúc 4:53

a/

Nhận thấy \(cosx=0\) không phải nghiệm, chia 2 vế cho \(cos^2x\)

\(\Leftrightarrow3tan^2x+8tanx+8\sqrt{3}-9=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-\sqrt{3}\\tanx=\frac{3\sqrt{3}-8}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{3}+k\pi\\x=arctan\left(\frac{3\sqrt{3}-8}{3}\right)+k\pi\end{matrix}\right.\)

b/

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^2x\)

\(tan^2x+2tanx-2=\frac{1}{2}\left(1+tan^2x\right)\)

\(\Leftrightarrow tan^2x+4tanx-5=0\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=arctan\left(-5\right)+k\pi\end{matrix}\right.\)

c/

\(\Leftrightarrow\left(sinx+1\right)\left(1-2sin^2x-1\right)=0\)

\(\Leftrightarrow sin^2x\left(sinx+1\right)=0\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
AT
Xem chi tiết
NL
5 tháng 8 2020 lúc 23:41

Ta có: \(-1\le cosa\le1\) ; \(\forall a\)

\(\Rightarrow\left\{{}\begin{matrix}cos4x\le1\\-4cos2x\le4\\cosx\le1\end{matrix}\right.\) \(\Rightarrow cos4x-4cos2x+cosx\le6\)

\(\Rightarrow cos4x-4cos2x+cosx-6\le0\)

Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}cos4x=1\\cos2x=-1\\cosx=1\end{matrix}\right.\)

Phương trình vô nghiệm

Bình luận (0)