so sánh:
\(\left(\frac{1}{16}\right)^{250}\)và\(\left(\frac{1}{2}\right)^{1500}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1)Tính
a)\(\frac{\left(3^3\right)^2\times\left(2^3\right)^5}{\left(2\times3\right)^6\times\left(2^5\right)^3}\)
2)So sánh
\(5^{1000}\)và\(3^{1500}\)
3)Tìm x biết
\(\left(\frac{1}{2}\right)^{x+1}=\frac{1}{16}\)
3)
\(\left(\frac{1}{2}\right)^{x+1}=\frac{1}{16}\)
⇒ \(\left(\frac{1}{2}\right)^{x+1}=\left(\frac{1}{2}\right)^4\)
⇒ \(x+1=4\)
⇒ \(x=4-1\)
⇒ \(x=3\)
Vậy \(x=3.\)
Chúc bạn học tốt!
So sánh:
\(\left(\frac{1}{16}\right)^{250}\) và \(\left(\frac{1}{2}\right)^{1500}\)
Ta có:
\(\left(\frac{1}{16}\right)^{250}=\left(\frac{1}{16}\right)^{250}.\)
\(\left(\frac{1}{2}\right)^{1500}=\left[\left(\frac{1}{2}\right)^6\right]^{250}=\left(\frac{1}{64}\right)^{250}.\)
Vì \(\frac{1}{16}>\frac{1}{64}\) nên \(\left(\frac{1}{16}\right)^{250}>\left(\frac{1}{64}\right)^{250}.\)
\(\Rightarrow\left(\frac{1}{16}\right)^{250}>\left(\frac{1}{2}\right)^{1500}.\)
Chúc bạn học tốt!
So sánh
a) \(3^{105}\)và\(4^{85}\)
b)\(\left(-\frac{1}{16}^{10}\right)\)và \(\left(-\frac{1}{2}^{50}\right)\)
Cho \(x=\sqrt{6+2\sqrt{2}.\left(\sqrt{\frac{5}{2}-\sqrt{6}+\sqrt{\left(3\sqrt{a}+1\right)\left(2a-2\right)-\frac{6a^2+6\sqrt{a}-8a-4a\sqrt{a}}{\sqrt{a}-1}+8}}\right)}\) với a là số thực không âm
\(y=\frac{\frac{x-2}{x}+\frac{1}{x-2}}{12-8\sqrt{5}}.\left(-16\right)\)
So sánh x và y
So sánh hai số \(x=\left(\frac{1}{2}\right)^{225}\) và \(y=\left(\frac{1}{3}\right)^{150}\)
x=[(1/2)^3]^75 =>(1/8)^75
y=[(1/3)^2]^75 =>(1/9)^75
vì 1/8>1/9
=>(1/2)^225 > (1/3)^150
So sánh B và \(\frac{-1}{2}\)
Cho B = \(\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).....\left(\frac{1}{100^2}-1\right)\)
Đặt \(100=n\) , ta có :
\(B=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)....\left(\frac{1}{n^2}-1\right)\)
\(=\frac{\left(-1\right).3}{2^2}.\frac{\left(-2\right).4}{3^2}.....\frac{\left(1-n\right)\left(1+n\right)}{n^2}\)
\(=\frac{\left(-1\right).\left(-2\right)....\left(1-n\right)}{2.3.....n}.\frac{3.4........\left(1+n\right)}{2.3.....n}\)
\(=\frac{\left(-1\right).2.3.....\left(n-1\right)}{2.3......n}.\frac{3.4.....\left(n+1\right)}{2.3.......n}\)
\(=\frac{\left(-1\right)}{n}.\frac{n+1}{2}=\frac{-1}{2}.\frac{n+1}{n}< \frac{-1}{2}\)
Vậy \(B< \frac{-1}{2}\)
Tính tổng:
S=\(\left(-\frac{1}{7}\right)\)\(^0\)+ \(\left(-\frac{1}{7}\right)\)\(^1\)+ \(\left(-\frac{1}{7}\right)\)\(^2\)+ .....+ \(\left(-\frac{1}{7}\right)\)\(^{2017}\)
So sánh S và \(\frac{7}{8}\)
Bài 1:So sánh
\(5^{1000}\)và\(3^{1500}\)
Bài 2:Tính
\(\frac{\left(3^3\right)^2\times\left(2^3\right)^5}{\left(2\times3\right)^6\times\left(2^5\right)^3}\)
Bài 3:Chứng minh rằng
a)\(7^6+7^5-7^4\)chia hết cho 11
b)\(81^7-27^9-9^{13}\)chia hết cho 45
Bài 2:
Ta có: \(\frac{\left(3^3\right)^2.\left(2^3\right)^5}{\left(2.3\right)^6.\left(2^5\right)^3}\)\(=\frac{3^6.2^{15}}{2^6.3^6.2^{15}}\)\(\frac{1}{2^6}=\frac{1}{64}\)
Chúc hk tốt nha!!!
Tính
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...........\left(\frac{1}{100^2}-1\right)\)
So Sánh A với -1/2^2
Giải giúp mình😍😍
\(M=\left|x-\frac{2006}{2007}\right|+\left|x-1\right|\)