Ôn tập toán 7

H24

So sánh B và \(\frac{-1}{2}\)

Cho B = \(\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).....\left(\frac{1}{100^2}-1\right)\)

VT
30 tháng 8 2016 lúc 10:25

Đặt \(100=n\) , ta có :

\(B=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)....\left(\frac{1}{n^2}-1\right)\)

    \(=\frac{\left(-1\right).3}{2^2}.\frac{\left(-2\right).4}{3^2}.....\frac{\left(1-n\right)\left(1+n\right)}{n^2}\)

    \(=\frac{\left(-1\right).\left(-2\right)....\left(1-n\right)}{2.3.....n}.\frac{3.4........\left(1+n\right)}{2.3.....n}\)

     \(=\frac{\left(-1\right).2.3.....\left(n-1\right)}{2.3......n}.\frac{3.4.....\left(n+1\right)}{2.3.......n}\)

     \(=\frac{\left(-1\right)}{n}.\frac{n+1}{2}=\frac{-1}{2}.\frac{n+1}{n}< \frac{-1}{2}\)

Vậy \(B< \frac{-1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
NT
Xem chi tiết
VH
Xem chi tiết
MD
Xem chi tiết
DA
Xem chi tiết
HN
Xem chi tiết
NV
Xem chi tiết
VH
Xem chi tiết
NT
Xem chi tiết