Tìm dư trong phép chia đa thức \(5x^{2015}-2x^{2016}+8.\)cho \(x-1\)
Tìm số dư trong phép chia đa thức ( x^100 +x^20 - 13x + 7 ) : ( 8x + 5 )
Dư của đa thức f(x) cho x-1; x-2 lần lượt là 2 và 5. Tìm dư của phép chia đa thức f(x) cho x^2-3x+2 ?
Tiếp nhé các bn.
Cho đa thức \(f\left(x\right)=x^{2009}+x^{2008}+1\) . Số dư trong phép chia đa thức \(f\left(x\right)\) cho đa thức \(x^2+x+1\) là:.......(Toán 8 nha)
cho đa thức b(x)= m2x2016+2mx2015. tìm các giá trị của m để đa thức b(x) có nghiệm là x=-1
Tìm đa thức dư của phép chia x2019+x2018+x+2018 cho x2-1.
Các cậu giúp giùm mk với, then kiu các cậu ha :)))
Khi chia cho đa thức bậc 2 thì dư tối đa là bậc 1, giả sử đó là \(ax+b\)
\(\Rightarrow x^{2019}+x^{2018}+x+2018=\left(x^2-1\right).P\left(x\right)+ax+b\)
Trong đó \(P\left(x\right)\) là đa thức thương (ko cần quan tâm)
Thay lần lượt \(x=-1\) và \(x=1\) vào ta được:
\(\left\{{}\begin{matrix}2017=-a+b\\2021=a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=2019\end{matrix}\right.\)
Đa thức dư là \(2x+2019\)
Lời giải:
Vì $x^2-1$ là đa thức bậc 2 nên đa thức dư khi chia $x^{2019}+x^{2018}+x+2018$ cho $x^2-1$ phải có bậc nhỏ hơn 2.
Đặt đa thức dư cần tìm là $ax+b$
Ta có:
\(x^{2019}+x^{2018}+x+2018=Q(x)(x^2-1)+ax+b\) với $Q(x)$ là đa thức thương
Lần lượt thay $x=1,x=-1$ ta có:
\(\left\{\begin{matrix} 2021=a+b\\ 2017=-a+b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=2\\ b=2019\end{matrix}\right.\)
Vậy đa thức dư là $2x+2019$
Cho đa thức \(P\left(x\right)=5x^3-7x^2+2x+m\)( m là hằng số )
a) Tìm m, biết P(x) chia hết cho đa thức x-2
b) Với m vừa tìm, hãy xác minh các hệ số a,b,c của đa thức \(Q\left(x\right)=x^3+ax^2+bx+c\). Biết rằng khi chia đa thức P(x) cho đa thức Q(x) được đa thức dư là \(R\left(x\right)=-12x^2-8x-31\)
Tìm a, b, c để đa thức ax3+bx2+c chia hết cho đa thức x-2 và chia cho x2-1 thì dư 2x+5.
Đặt \(f\left(x\right)=ax^{3\: }+bx^2+c\)
Gọi g(x), h(x) lần lượt là thương khi chia đa thức f(x) cho đa thức x-2
và đa thức \(x^2-1\)
+ \(f\left(x\right)=\left(x-2\right)\cdot g\left(x\right)\) (1)
\(f\left(x\right)=\left(x^2-1\right)\cdot h\left(x\right)+2x+5\) (2)
Thay x = 2 vào (1) ta có :
\(f\left(2\right)=\left(2-2\right)\cdot g\left(x\right)=0\)
\(\Rightarrow8a+4b+c=0\)
+ Lần lượt thay \(x=1\) và x = -1 vào (2) ta có :
\(\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(-1\right)=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b+c=2\cdot1+5=7\\-a+b+c=3\end{matrix}\right.\)
\(\Rightarrow2a=4\Rightarrow a=2\)( TM )
\(\Rightarrow\left\{{}\begin{matrix}4b+c=-16\\b+c=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=-7\\c=12\end{matrix}\right.\) ( TM )
Cho đa thức \(f\left(x\right)=x^{2009}+x^{2008}+1\) . Số dư trong phép chia đa thức \(f\left(x\right)\) cho đa thức \(x^2+x+1\) là:......
Cho đa thức \(f\left(x\right)=x^{2009}+x^{2008}+1\) . Số dư trong phép chia đa thức \(f\left(x\right)\) cho đa thức \(x^2+x+1\) là:......