Cho tam giác ABC cân tại A. BC=10cm, AB=12cm. Từ A hạ AH vuông góc BC. Tính AH
Cho tam giác ABC có AB=AC=10cm, BC=12cm. Vẽ AH vuông góc BC tại H a) Chứng minh tam giác AHB=tam giác AHC, từ đó chứng minh AH là tia phân giác của góc A b) Tính độ dài AH c) Từ B kẻ Bx vuông góc AB, từ C kẻ Cy vuông góc AC, chúng cắt nhau tại O. Tam giác ABC là tam giác gì, vì sao?
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>góc BAH=góc CAH
=>AH là phân giác của góc BAC
b: BH=CH=12/2=6cm
AH=căn 10^2-6^2=8cm
Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Vẽ AH vuông góc với BC tại H.
a) Chứng minh: △ABC cân
b) Chứng minh: △AHB = △AHC, từ đó chứng minh AH là tia phân giác của góc A
c) Từ H vẽ HM ⊥ AB (M ϵ AB) và kẻ HN ⊥ AC (N ϵ AC). Chứng minh: △BHM = △HCN
d) Tính độ dài AH
â)Ta có : AB = AC =10 cm (gt)
=> tam giác ABC cân tại A (2 cạnh bên = nhau )
b) Xét tam giác AHB va tam giac AHC ,co :
\(\widehat{AHB}=\widehat{AHC}=90^O\) ( AH là đường cao )
AB =AC =10 cm (gt )
AH là cạnh chung
Do đo : tam giác AHB =tam giác AHC ( cạnh huyền - cạnh góc vuông )
=>\(\widehat{BAH}=\widehat{CAH}\)( hai góc tương ứng )
=>AH là tia phân giác của góc A
c)Vì trong tam giác cân đường phân giác đồng thời là đường trung tuyến của tam giác
Nên :H là trung điểm của BC
=>BH = CH = \(\frac{BC}{2}\)=12/2 = 6 cm
TRẢ LỜI TIẾP CÂU Ở TRÊN NHA ( HỒI NÃY BẤM NHẦM GỬI TRẢ LỜI )
b) Vì trong tam giác cân đường phân giác đồng thời là đường trung tuyến của tam giác
Nên : H là trung điểm của BC
=> BH =CH =\(\frac{BC}{2}=\frac{12}{2}=6cm\)
Xét : tam giác BMH và tam giác HCN , co :
BH = CH = 6cm ( chứng minh trên )
\(\widehat{M}=\widehat{N}=90^o\left(gt\right)\)
\(\widehat{B}=\widehat{C}\) (Vì tam giác ABC cân tại A nên hai góc ở đáy = nhau )
Do do:tm giác BHM = tam giác HCN
đ) Áp dụng định lý pytago vào tam giác AHC vuông tại H
\(AH^2=AC^2-HC^2\) =\(10^2-6^2\)=\(100-36=64\)
=>\(AH=\sqrt{64}=8cm\) OK CHÚC BẠN HỌC TỐT
1.a)
Vì AB=AC => Tam giác ABC cân
b)
Vì △ABC cân
=> góc ABC=góc ACB (1)
góc AHC=góc AHB=90 độ (2)
AB=AC (gt) (3)
Từ (1)(2)(3) => △AHB = △AHC (cạnh huyền-góc nhọn)
=> góc BAH = góc CAH
=> AH là tia phân giác của góc A
c) Vì góc ABC = góc ACB
=> góc MBH = góc NCH
góc BMH = góc HNC =90 độ
=> △BHM = △HCN (g.g)
d) Ta có: AH.BC=AB.AC
=> AH.12=10.10
=> AH = 25/3 (cm)
Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Vẽ AH vuông góc với BC tại H.
a) Chứng minh: △ABC cân
b) Chứng minh: △AHB = △AHC, từ đó chứng minh AH là tia phân giác của góc A
c) Từ H vẽ HM ⊥ AB (M ϵ AB) và kẻ HN ⊥ AC (N ϵ AC). Chứng minh: △BHM = △HCN
d) Tính độ dài AH
Bạn ơi có gải ko đăng lên đi
1.a)
Vì AB=AC => Tam giác ABC cân
b)
Vì △ABC cân
=> góc ABC=góc ACB (1)
góc AHC=góc AHB=90 độ (2)
AB=AC (gt) (3)
Từ (1)(2)(3) => △AHB = △AHC (cạnh huyền-góc nhọn)
=> góc BAH = góc CAH
=> AH là tia phân giác của góc A
c) Vì góc ABC = góc ACB
=> góc MBH = góc NCH
góc BMH = góc HNC =90 độ
=> △BHM = △HCN (g.g)
d) Ta có: AH.BC=AB.AC
=> AH.12=10.10
=> AH = 25/3 (cm)
Cho tam giác ABC có AB = AC =10cm, BC = 12cm. Vẽ AH vuông góc BC tại H. a) Chứng minh: ABC cân. (1đ) b) Chứng minh = AHB AHC , từ đó chứng minh AH là tia phân giác của góc A. (2đ) c) Từ H vẽ HM ⊥ AB ( ) M AB và kẻ HN ⊥ AC ( ) N AC . Chứng minh : BHM = HCN (1,5đ) d) Tính độ dài AH. (1đ) e) Từ B kẻ Bx ⊥ AB, từ C kẻ Cy ⊥ AC chúng cắt nhau tại O. Tam giác OBC là tam giác gì? Vì sao? (1đ)
Cho tam giác ABC cân tại A có AB = AC =10cm , BC = 12cm. Vẽ AH vuông góc BC tại H. a) Chứng minh ∆ABH = ∆ACH . b) Tính độ dài AH. c) Từ H vẽ HM vuông góc AB (M AB) , vẽ HN vuông góc AC (N AC) . Chứng minh ∆BHM = ∆CHN. d) Từ B vẽ Bx AB, từ C vẽ Cy vuông góc AC chúng cắt nhau tại O. Tam giác OBC là tam giác gì? Vì sao?
\(\text{a) Có }\Delta ABC\text{cân tại A}\Rightarrow\widehat{ABC}=\widehat{ACB}\)
\(\text{Xét }\Delta AHB\text{ và }\Delta AHC\text{ có:}\)
\(\widehat{AHB}=\widehat{AHC}=90^o\)
\(AB=AC=10cm\)\(\Rightarrow\)\( \Delta AHB\text{=}\Delta AHC\left(ch-gn\right)\)
\(\widehat{ABC}=\widehat{ACB}\)
\(\text{b) Có }\Delta AHB=\Delta AHC\Rightarrow HB=HC=\frac{BC}{2}=\frac{12}{2}=6\left(cm\right)\)
\(\text{ Xét }\Delta AHB\text{vuông tại H có:}\)
\(AH^2+BH^2=AB^2\) (Định lý py-ta-go)
\(AH^2=AB^2-BH^2=10^2-6^2=100-36=64\)
\(AH=\sqrt{64}=8\left(cm\right)\)
\(\text{c) Xét }\Delta BHM\text{ và }\Delta CHN\text{ có:}\)
\(\widehat{BMH}=\widehat{CNH}=90^o\)
\(HB=HC\text{ (CMT)}\)\(\Rightarrow\)\(\text{ }\Delta BHM\text{ = }\Delta CHN \left(CH-GN\right)\)
\(\widehat{ABC}=\widehat{ACB}\)
\(\text{d) }\)\(\text{Ta có: }MH\perp AB,OB\perp AB\Rightarrow MH//OB\)
\(\Rightarrow\widehat{MHB}=\widehat{CBO}\text{ (2 góc so le trong)}\)
\(\text{Ta có: }NH\perp AC,OC\perp AC\Rightarrow NH//OC\)
\(\Rightarrow\widehat{NHC}=\widehat{BCO}\text{ (2 góc so le trong)}\)
\(\text{ }\text{Mà }\Delta BHM\text{ = }\Delta CHN\Rightarrow\widehat{MHB}=\widehat{NHC}\)
\(\text{Hay}\widehat{CBO}=\widehat{BCO}\)\(\Rightarrow\Delta OBC\text{ cân tại O}\)
cho tam giác cân ABC có ABC : AB=AC=10cm , BC=12cm , gọi AH là tia phân giác góc A (H thuộc BC)
a. CM BH=HC và AH vuông góc BC
b. Tính độ dài AH
c. Kẻ HD vuông góc AB (D thuộc AB) HE vuông góc AC (E thuộc AC).Hỏi tam giác DHE là tam giác gì ?
d. CM DE//BC
Giúp mình với ạ 😭✨
a: ΔABC cân tại A có AH là phân giác
nên H là trung điểm của BC
ΔABC cân tại A có AH là trung tuyến
nên AH vuông góc BC
b: BH=CH=12/2=6cm
AH=căn AB^2-AH^2=8cm
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
=>ΔADH=ΔAEH
=>AD=AE và HD=HE
=>ΔHDE cân tại H
d: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
Cho tam giác ABC cân tại A có AB = 10cm, BH = 6cm. Vẽ AH vuông góc BC tại H.
a, Tính AH =?
b) Chứng minh tam giác ABH= tam giác ACH , từ đó chứng minh AH là tia phân giác của góc A.
c) Từ H vẽ HM vuông góc AB (M ϵ AB) và kẻ HN vuông góc AC (N ϵ AC) .
Chứng minh : tam giác BHM = tam giác HCN
d) Từ B kẻ Bx vuông góc AB, từ C kẻ Cy vuông góc AC chúng cắt nhau tại O. Tam giác OBC là tam giác gì? Vì sao?
CÁC BẠN VẼ HÌNH GIÚP MÌNH NHA! MÌNH CẢM ƠN CÁC BẠN!
a: Ta có: ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AH^2=10^2-6^2=64\)
=>\(AH=\sqrt{64}=8\left(cm\right)\)
b: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
=>AH là phân giác của góc BAC
c: Ta có: ΔAHB=ΔAHC
=>BH=CH
Xét ΔBMH vuông tại M và ΔCNH vuông tại N có
BH=CH
\(\widehat{B}=\widehat{C}\)
Do đó: ΔBMH=ΔCNH
d: Xét ΔABO vuông tại B và ΔACO vuông tại C có
AO chung
AB=AC
Do đó: ΔABO=ΔACO
=>OB=OC
=>ΔOBC cân tại O
Cho tam giác ABC cân tại A có đường cao AH. Kẻ HI và HK vuông góc với AB và AC biết AB= 10cm, BC=12cm. Tính BI,HK,IK
cho tam giác ABC cân tại A . kẻ AH là tia phân giác của góc A. H thuộc BC . từ H kẻ HD vuông góc với AB , kẻ HE vuông góc với AC chứng minh ràng
a, tam giác AHD = tam giác AHE
B, Cho AB =10cm AH= 8CM Tính HC
c, AH vuông góc DE