CMR : \(n^2+n+2\)không chia hết cho 15 \(\forall n\in N\)
Cmr \(n^2(n+1)+2n(n+1) \) chia hết cho 6 \(\forall n\in Z\)
\(n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)
Vì n(n+1)(n+2) là tích của 3 số tự nhiên liên tiếp nên chia hết cho cả 2 và 3 . Mà (2,3) = 1 nên n(n+1)(n+2) chia hết cho 6.
Từ đó có đpcm
\(n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)⋮6\)
=>đpcm
\(n^2\left(n+1\right)+2n\left(n+1\right)=n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)\)
Có: \(n;n+1;n+2\) là ba số tự nhiên liên tiếp nên chia hết cho cả 2 và 6.
Mà: \(\text{Ư}CLN\left(n\left(n+1\right)\left(n+2\right)\right)=1\) nên \(n\left(n+1\right)\left(n+2\right)⋮2.3=6\) (đpcm)
Trong các mệnh đề sau, mệnh đề nào đúng? Giải thích? Phát biểu các mệnh đề đó thành lời
a) \(\exists x\in R\), 5x - \(3x^2\) \(\le1\)
b) \(\exists x\in R\), \(x^2+2x+5\) là hợp số
c) \(\forall n\in N\), \(n^2+1\) không chia hết cho 3
d) \(\forall n\in N^{sao}\), n ( n + 1 ) là số lẻ
e) \(\forall n\in N^{sao}\), n ( n + 1) ( n + 2 ) chia hết cho 6
Các mệnh đề sau đây đúng hay sai?
a) \(\forall x\in R\), x > 1 => \(\dfrac{2x}{x+1}< 1\)
b) \(\forall x\in R\), x >1 = > \(\dfrac{2x}{x+1}>1\)
c) \(\forall x\in N\), \(x^2\) chia hết cho 6 = > x chia hết cho 6
d) \(\forall x\in N\), \(x^2\) chia hết cho 9 => x chia hết cho 9
a) \(\forall x\in R,x>1\Rightarrow\dfrac{2x}{x+1}< 1\rightarrow Sai\)
vì \(\dfrac{2x}{x+1}< 1\Leftrightarrow\dfrac{x-1}{x+1}< 0\Leftrightarrow x< 1\left(mâu.thuẫn.x>1\right)\)
b) \(\forall x\in R,x>1\Rightarrow\dfrac{2x}{x+1}>1\rightarrowĐúng\)
Vì \(\dfrac{2x}{x+1}>1\Leftrightarrow\dfrac{x-1}{x+1}>0\Leftrightarrow x>1\left(đúng.đk\right)\)
c) \(\forall x\in N,x^2⋮6\Rightarrow x⋮6\rightarrowđúng\)
\(\forall x\in N,x^2⋮9\Rightarrow x⋮9\rightarrowđúng\)
Các mệnh đề sau đây đúng hay sai?
a) \(\forall x\in R\)
, \(x^2\) chia hết cho 6 => x chia hết cho 6
d) \(\forall\in N\), \(x^2\) chia hết cho 9 => x chia hết cho 9
chứng minh \(\forall n\in N\)thì n2+7n+2020 không chia hết cho 7
Nhan xet \(n^2\equiv0,1,2,4\left(mod7\right)\forall n\inℕ\) , \(7n⋮7\) va \(2020\equiv4\left(mod7\right)\)
nen suy ra \(n^2+7n+20204\equiv4,5,6,1\left(mod7\right)\)
Vay \(^{n^2+7n+2020̸}\) khong chia het cho 7
lm thế khó hỉu lém ak mod là j ak e chx hok
1, a, CMR :Với \(\forall\)n \(\in\)N thì A(n) = n(2n + 7) (7n + 7) chia hết cho 6
b, CMR : An = n(n2 + 1) (n2 + 4)\(⋮\)5 Với \(\forall\)n \(\in\)Z
CMR: n\(\in\)Z
a)\(\left(n+3\right)^2-\left(n-1\right)^2\)chia hết cho 8
b)\(\left(n+6\right)^2-\left(n-6\right)^2\)chia hết cho 24
c)\(\left(n^2+3n+1\right)^2-1\)chia hết cho 24 \(\forall\)n\(\in\)Z
a) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)
\(=\left(2n+2\right)4\)
\(=2\left(n+1\right).4\)
\(=8\left(n+1\right)⋮8\)
=> đpcm
a/\(\left(n+3\right)^2-\left(n-1\right)^2.\)
\(=\left(n^2+6n+9\right)-\left(n^2-2n+1\right)\)
\(=n^2+6n+9-n^2+2n-1\)
\(=8n+8\)
\(=8\left(n+1\right)\)
có \(8\left(n+1\right)⋮8\)
\(\Rightarrow\left(n+3\right)^2-\left(n-1\right)^2⋮8\)
b/ \(\left(n+6\right)^2-\left(n-6\right)^2\)
\(=\left(n^2+12n+36\right)-\left(n^2-12n+36\right)\)
\(=n^2+12n+36-n^2+12n-36\)
\(=24n\)
có \(24n⋮24\)
\(\Rightarrow\left(n+6\right)^2-\left(n-6\right)^2⋮24\)
CMR :
\(n^2+n+2\)không chia hết cho 15 vs mọi \(n\in N\)
Ta có: n^2 + n + 2 = n(n+1) + 2.
n(n+1) là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6.
Suy ra: n(n+1)+2 có chữ số tận cùng là 2; 4; 8.
Mà: 2; 4; 8 không chia hết cho 5.
Nên: n(n+1)+2 không chia hết cho 5.
Vậy: n^2 + n+2 không chia hết cho 15 với mọi n thuộc N.
Ta có: n^2 + n + 2 = n﴾n+1﴿ + 2.
n﴾n+1﴿ là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6.
Suy ra: n﴾n+1﴿+2 có chữ số tận cùng là 2; 4; 8.
Mà: 2; 4; 8 không chia hết cho 5.
Nên: n﴾n+1﴿+2 không chia hết cho 5.
Vậy: n^2 + n+2 không chia hết cho 15 với mọi n thuộc N.
Câu 1:Trong các mện đề sau , mệnh đề nào đúng
\(A.\exists n\in N,n\left(n+1\right)\left(n+2\right)\)là số lẻ \(B.\forall x\in R,x^2< \Leftrightarrow-2< x< 2\)
\(C.\exists n\in N,n^2+1\)chia hết cho 3 \(D.\forall x\in R,x^2\ge\pm3\)
Câu 2 : Trong các mệnh đề sau,mệnh đề nào là mệnh đề sai ?
\(A.\exists x\in R,x^2-3x+2=0\) \(B.\forall x\in R,x^2\ge0\)
\(C.\exists n\in N,n^2=n\)
\(D.\forall n\in N\) thì n< 2n