Những câu hỏi liên quan
TT
Xem chi tiết
NN
Xem chi tiết
H24
11 tháng 8 2020 lúc 15:42

Kết quả là 25

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
Xem chi tiết
BT
Xem chi tiết
H24
18 tháng 8 2020 lúc 15:17

\(x^2+2x\sqrt{x+\frac{1}{x}}=8x-1\)(đk;x>0)

\(\Leftrightarrow x^2+2\sqrt{x}\cdot\sqrt{x^2+1}=8x-1\)

\(\Leftrightarrow\left(x^2+1\right)+2\sqrt{x}\cdot\sqrt{x^2+1}+x=9x\)

\(\Leftrightarrow\left(\sqrt{x^2+1}+\sqrt{x}\right)^2-9x=0\)

\(\Leftrightarrow\left(\sqrt{x^2+1}+\sqrt{x}+3\sqrt{x}\right)\left(\sqrt{x^2+1}+\sqrt{x}-3\sqrt{x}\right)=0\)

\(\Leftrightarrow\left(\sqrt{x^2+1}+4\sqrt{x}\right)\left(\sqrt{x^2+1}-2\sqrt{x}\right)=0\)

\(\Leftrightarrow\sqrt{x^2+1}-2\sqrt{x}=0\)(vì \(\sqrt{x^2+1}+4\sqrt{x}>0\))

\(\Leftrightarrow x^2-4x+1=0\)

\(\Leftrightarrow\left(x-2+\sqrt{3}\right)\left(x-2-\sqrt{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2-\sqrt{3}\\x=2+\sqrt{3}\end{cases}}\)(thõa mãn điều kiện)

Bình luận (0)
 Khách vãng lai đã xóa
H24
18 tháng 8 2020 lúc 15:31

\(\sqrt{x-2009}-\sqrt{y-2008}-\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)(đk:x>2009,y>2008,z>2)

\(\Leftrightarrow\left(\sqrt{x-2009}-1\right)^2+\left(\sqrt{x-2008}+1\right)^2+\left(\sqrt{z-2}+1\right)^2+4014=0\)(không thõa mãn)

Lý do có kết quả trên là vì chuyển 1\2 qua vế trái và tách theo hằng đẳng thức

Bài tiếp theo cũng làm tương tự

Bình luận (0)
 Khách vãng lai đã xóa
LH
Xem chi tiết
NT
30 tháng 10 2017 lúc 20:20

Xin lỗi online math em lỡ spam rồi đừng trừ diem a

Bình luận (0)
NK
Xem chi tiết
H24
Xem chi tiết
LH
23 tháng 8 2019 lúc 22:47

1,\(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)(đk :\(x\ge\frac{2}{3}\)) (1)

Đặt \(4x+1=a\left(a\ge0\right)\) , \(3x-2=b\left(b\ge0\right)\)

\(a-b=4x+1-3x+2=x+3\)

=> \(\sqrt{a}-\sqrt{b}=\frac{a-b}{5}\)

<=> \(5\left(\sqrt{a}-\sqrt{b}\right)=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\)

<=> \(5\left(\sqrt{a}-\sqrt{b}\right)-\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)=0\)

<=> \(\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}+5\right)=0\)

=> \(\sqrt{a}-\sqrt{b}=0\)(vì \(\sqrt{a}+\sqrt{b}+5\ge5\) do a,b\(\ge0\))

<=> \(\sqrt{a}=\sqrt{b}\) <=>\(4x+1=3x-2\) <=> \(x=-3\)(k tm đk)

Vậy pt (1) vô nghiệm

Bình luận (0)
LH
23 tháng 8 2019 lúc 23:23

1,\(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\) (1) (đk: \(x\ge\frac{2}{3}\))

Đặt \(4x+1=a\left(a\ge0\right)\) ,\(3x-2=b\left(b\ge0\right)\)

=> \(a-b=4x+1-3x+2=x+3\)

\(\sqrt{a}-\sqrt{b}=\frac{a-b}{5}\)

<=> \(5\left(\sqrt{a}-\sqrt{b}\right)-\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)=0\)

<=> \(\left(\sqrt{a}-\sqrt{b}\right)\left(5-\sqrt{a}-\sqrt{b}\right)=0\)

=> \(\left[{}\begin{matrix}\sqrt{a}=\sqrt{b}\\5=\sqrt{a}+\sqrt{b}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}4x+1=3x-2\\25=a+b+2\sqrt{ab}\end{matrix}\right.\)<=>\(\left[{}\begin{matrix}x=-3\left(ktm\right)\\25=a+b+2\sqrt{ab}\end{matrix}\right.\)

=> 25=4x+1+3x-2+\(2\sqrt{\left(4x+1\right)\left(3x-2\right)}\)

<=> 26-7x=2\(\sqrt{12x^2-5x-2}\)

<=> \(676-364x+49x^2=48x^2-20x-8\)

<=> \(676-364x+49x^2-48x^2+20x+8=0\)

<=> \(x^2-344x+684=0\)

<=> \(x^2-342x-2x+684=0\)

<=> \(x\left(x-342\right)-2\left(x-342\right)=0\)

<=> (x-2)(x-342)=0

=> \(\left[{}\begin{matrix}x=2\left(tm\right)\\x=342\left(ktm\right)\end{matrix}\right.\)

Vậy pt (1) có nghiệm x=2

Bình luận (0)
VP
26 tháng 10 2019 lúc 14:42

Violympic toán 9

Bình luận (0)
 Khách vãng lai đã xóa
DD
Xem chi tiết
NL
8 tháng 6 2019 lúc 18:41

Phương trình có vô số nghiệm

Nếu thay \(\sqrt{y-2008}\) bằng \(\sqrt{y+2008}\) thì phương trình có bộ nghiệm duy nhất: \(\left(x;y;z\right)=\left(2010;-2007;3\right)\)

Bình luận (0)