Tìm n để (n3+3)(n3+9)(n3+13)(n3+30)<0
Tính giá trị biểu thức:
a) M = m 2 ( m + n ) - n 2 m - n 3 tại m = -2017 và n = 2017;
b) N = n 3 - 3 n 2 - n(3 - n) tại n = 13.
Tìm số nguyên n để :
(n3-3n+4) ⋮ (n+1)
Tìm số nguyên n để : (n3-3n+4) ⋮ (n+1)
\(\Leftrightarrow n^3+n^2-n^2-n-2n-2+6⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)
Tìm n để n3+7n2+6n chia hết cho 125
Lời giải:
$125=5^3$
$A=n^3+7n^2+6n=n(n^2+7n+6)=n(n+1)(n+6)$
Nếu $n=5k$ với $k$ nguyên thì $n+1,n+6$ đều không chia hết cho $5$.
Do đó để $A\vdots $ thì $n\vdots 125$
Nếu $n=5k+1$ thì $n,n+1,n+6$ đều không chia hết cho $5$ nên $A\not\vdots 5$
Nếu $n=5k+2, 5k+3$ thì tương tự $n=5k+1$, loại
Nếu $n=5k+4$ thì $A=(5k+4)(5k+5)(5k+10)=25(5k+4)(k+1)(k+2)$
Để $A\vdots 125$ thì $(k+1)(k+2)\vdots 5$. Khi đó, $k+1\vdots 5$ hoặc $k+2\vdots 5$, hay $k$ có dạng $5t-1$ hoặc $5t-2$ với $t$ nguyên
$\Rightarrow n=5k+4=5(5t-1)+4=25t-1$ hoặc $n=5(5t-2)+4=25t-6$ với $t$ nguyên
Vậy $n$ có dạng $125t, 25t-1, 25t-6$ với $t$ là số nguyên nào đó.
Tìm số nguyên n để:
a) n3 – 2 chia hết cho n – 2
b) n3 – 3n2 – 3n – 1 chia hết cho n2 + n + 1
c) 5n – 2n chia hết cho 63
giúp vs ạ...
a: \(n^3-2⋮n-2\)
=>\(n^3-8+6⋮n-2\)
=>\(6⋮n-2\)
=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
b: \(n^3-3n^2-3n-1⋮n^2+n+1\)
=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
=>\(3⋮n^2+n+1\)
=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)
mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)
nên \(n^2+n+1\in\left\{1;3\right\}\)
=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)
chứng minh n3+3n2+2n chia hết cho 6 (mình ko nhớ n3 hay n3)
Có: \(n^3+3n^2+2n=n^3+n^2+2n^2+2n\)
\(=n^2\left(n+1\right)+2n\left(n+1\right)=\left(2n+n^2\right)\left(n+1\right)\)
\(=n\left(n+2\right)\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)
Có \(n;n+1;n+2\)là 3 số nguyên liên tiếp
\(\Rightarrow\)trong đó có một số chia hết cho 3; có ít nhất một số chia hết cho 2
\(\Rightarrow\)\(n\left(n+1\right)\left(n+2\right)\)chia hết cho \(2\times3\)
\(\Rightarrow\)\(n\left(n+1\right)\left(n+2\right)\)chia hết cho 6
\(\Rightarrow\)\(n^3+3n^2+2n\)chia hết cho 6
Bạn Phạm Trần Minh Ngọc làm thiếu rồi, mình phải có thêm dữ kiện 2 và 3 là 2 số nguyên tố cùng nhau nữa mới đủ ~~
Có:
n^ 3 + 3n^ 2 + 2n
= n ^3 + n^ 2 + 2n ^2 + 2n
= n ^2( n + 1 )+ 2n (n + 1)
= (2n + n ^2 )(n + 1 )
= n( n + 2)( n + 1)
= n( n + 1)(n + 2)Có n;n + 1;n + 2là 3 số nguyên liên tiếp
⇒ trong đó có một số chia hết cho 3; có ít nhất một số chia hết cho 2
⇒n (n + 1)( n + 2) chia hết cho 2 × 3
⇒n (n + 1)( n + 2) chia hết cho 6
⇒n^ 3 + 3n^ 2 + 2n chia hết cho 6
chứng minh (n-1)3+n3+(n+1)3 chia hết cho 9
Tìm Tìm số tự nhiên n để :
A=n3-n2+n-1 là số nguyên tố.
tìm n thuộc N để n3+n2-n+2 là số nguyên tố
Tìm số tự nhiên n nhỏ nhất sao cho n3 có ba chữ số tận cùng bằng 432 và ba chữ số đầu tiên là 106: n3=432...106¯¯¯¯¯¯¯¯¯