KS

Tìm n để n3+7n2+6n chia hết cho 125

AH
12 tháng 7 2021 lúc 17:06

Lời giải:
$125=5^3$

$A=n^3+7n^2+6n=n(n^2+7n+6)=n(n+1)(n+6)$

Nếu $n=5k$ với $k$ nguyên thì $n+1,n+6$ đều không chia hết cho $5$.

Do đó để $A\vdots $ thì $n\vdots 125$

Nếu $n=5k+1$ thì $n,n+1,n+6$ đều không chia hết cho $5$ nên $A\not\vdots 5$

Nếu $n=5k+2, 5k+3$ thì tương tự $n=5k+1$, loại

Nếu $n=5k+4$ thì $A=(5k+4)(5k+5)(5k+10)=25(5k+4)(k+1)(k+2)$

Để $A\vdots 125$ thì $(k+1)(k+2)\vdots 5$. Khi đó, $k+1\vdots 5$ hoặc $k+2\vdots 5$, hay $k$ có dạng $5t-1$ hoặc $5t-2$ với $t$ nguyên

$\Rightarrow n=5k+4=5(5t-1)+4=25t-1$ hoặc $n=5(5t-2)+4=25t-6$ với $t$ nguyên

Vậy $n$ có dạng $125t, 25t-1, 25t-6$ với $t$ là số nguyên nào đó.

Bình luận (0)

Các câu hỏi tương tự
LL
Xem chi tiết
DU
Xem chi tiết
LQ
Xem chi tiết
LQ
Xem chi tiết
LC
Xem chi tiết
LA
Xem chi tiết
NN
Xem chi tiết
TM
Xem chi tiết
TD
Xem chi tiết