Những câu hỏi liên quan
HG
Xem chi tiết
PB
Xem chi tiết
NT
17 tháng 8 2023 lúc 18:08

loading...  

Bình luận (0)
DA
Xem chi tiết
BT
12 tháng 7 2023 lúc 10:24

gõ latex đi b=)

Bình luận (0)
H9
12 tháng 7 2023 lúc 10:25

\(A=\sqrt{x}+1\) (đã thu gọn)

\(B=\dfrac{4\sqrt{x}}{x+4}\) (đã thu gọn)

\(A=x-\sqrt{x}+1=\sqrt{x}\cdot\sqrt{x}-\sqrt{x}+1=\sqrt{x}\left(\sqrt{x}-1\right)+1\)

\(A=\dfrac{3}{2\sqrt{x}}\) (đã thu gọn)

\(A=\dfrac{3}{\sqrt{x}+3}\) (đã thu gọn)

\(A=1-\sqrt{x}\) (đã thu gọn)

\(A=x-2\sqrt{x}-1=\sqrt{x}\left(\sqrt{x}-2\right)-1\)

Bình luận (0)
TB
Xem chi tiết
H24
Xem chi tiết
LL
2 tháng 7 2023 lúc 18:37

`a)->` ĐKXĐ : `x>=0;x\ne1`

`b)` Ta có :

`P=(\sqrtx)/(\sqrtx-1)-(2\sqrtx)/(\sqrtx+1)+(x-3)/(x-1)`

`P=(\sqrtx(\sqrtx+1)-2\sqrtx(\sqrtx-1)+x-3)/(x-1)`

`P=(x+\sqrtx-2x+2\sqrtx+x-3)/(x-1)`

`P=(3\sqrtx-3)/(x-1)`

`P=(3(\sqrtx-1))/((\sqrtx-1)(\sqrtx+1))`

`P=3/(\sqrtx+1)`

Vậy `P=3/(\sqrtx+1)` khi `x>=0;x\ne1`

Bình luận (3)
H24
2 tháng 7 2023 lúc 18:41

\(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}+\dfrac{x-3}{x-1}\\ =\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}+\dfrac{x-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{x-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{x+\sqrt{x}-2x+2\sqrt{x}+x-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\\)

\(=\dfrac{3}{\sqrt{x}+1}\)

Bổ sung \(\text{đ}k\text{x}\text{đ}:x\ge0;x\ne1\)

Bình luận (3)
L9
Xem chi tiết
QT
Xem chi tiết
NL
Xem chi tiết
TA
Xem chi tiết
NL
19 tháng 2 2021 lúc 19:56

Tham khảo thanh này để soạn đề chính xác hơn nha :vvv

Bình luận (0)
NT
19 tháng 2 2021 lúc 19:56

a) Ta có: \(M=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)

\(=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)

\(=\dfrac{x-9-\left(x-2\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)

\(=\dfrac{x-9-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{-\left(\sqrt{x}-7\right)}\)

\(=\dfrac{\sqrt{x}-7}{\sqrt{x}-2}\cdot\dfrac{-1}{\sqrt{x}-7}\)

\(=\dfrac{-1}{\sqrt{x}-2}\)(1)

b) Ta có: \(x^2-4x=0\)

\(\Leftrightarrow x\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)

Thay x=0 vào biểu thức (1), ta được:

\(M=\dfrac{-1}{\sqrt{0}-2}=\dfrac{-1}{-2}=\dfrac{1}{2}\)

Vậy: Khi \(x^2-4x=0\) thì \(M=\dfrac{1}{2}\)

Bình luận (0)